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Summary
This research is concerned with investigating methods for the control of McKibben

pneumatic actuators, or pneumatic muscles (PMs). PMs are a novel type of actuator that
closely mimic human skeletal muscles in size and power capabilities. PMs are
considered by the Air Force for use in exoskeletons to be worn by humans for strength
augmentation and rehabilitation after injury or illness, and for use as actuators in robotic
systems. The control of PMs is a challenging problem due to their highly nonlinear and
time-varying nature. In this research, we investigate adaptive, sliding mode, and soft
computing approaches to control of PMs and robotic systems actuated by PMs. The soft
computing approaches include neuro-fuzzy modeling of an actual PM in the Human
Effectiveness Lab at Wright Patterson Air Force Base, and evolutionary design of a fuzzy
PID controller based on this model. We also investigate a type of MIMO fuzzy model
predictive control for a planar arm actuated by four PMs. Some of the controllers are
tested on the actual PM at WPAFB while others are proven in simulations. A byproduct
of this research is an evolutionary fuzzy training algorithm useful for identification of
dynamical systems as well as classification problems.




1 Objectives

1.1 Introduction :

McKibben pneumatic actuators, or pneumatic muscles (PM), are a novel type of
pneumatic actuator consisting of a cylindrical, flexible rubber or plastic airtight tube
inside a braided plastic sheath (see Figure 2.1). When the tube is inflated it widens and,
due to the braided sheath, shortens. When it shortens, the contractile force exerted is
quite large in proportion to the PM's weight. Pneumatic muscles have the highest
power/weight ratio (1kW/kg [1]) and power/volume ratio (1W/em? [2]) of any actuator.
They are roughly the same as human skeletal muscles in size, shape, and power output.
A significant advantage of PM actuators is the ability to make them autonomous. They
can be energized from a small canister of gas that can rapidly create, from a chemical
reaction, large pressures for inflation of the muscle.

PMs have been used for years in robotics to perform precision manipulation tasks
([3]-[11]). They can also be used to actuate an exoskeleton frame worn by humans to
enhance strength and/or mobility. Concepts developed from our research can be used to
help the disabled obtain enhanced strength and mobility. Such people have suffered from
stroke, accidents, or other problems to reduce their physical capabilities.

1In order for PMs to be used for precision robotics or for exoskeleton actuation, it is
necessary to be able to control them precisely. Since they are highly nonlinear and time
varying, their control is a challenging problem. Our research studies the closed-loop
control of PM systems for accurate position control. Position control for PMs refers to
the control of their length under varying loads. When actuating robots or exoskeletons,
this translates into accurate control of joint angles or end-effector spatial positioning.

There have been several investigations into applications of PMs and their properties
([6]-[16]). Pneumatic muscle research is ongoing at the Human Sensory Feedback (HSF)
Laboratory at Wright Patterson Air Force Base (WPAFB) ([6], [7]). The HSF Lab
contains a PM test station that consists of several PMs, sensors, actuators, and
instrumentation to control the PMs’ operation. In our research, we have interacted to a
great extent with the personnel at WPAFB, testing our controllers on the PMs in their lab.
We are indebted to the personnel in this lab for their help in performing our research.

1.2 Objectives and Summary of Research on This Project

In this research, we are concerned with PM position control when used in
configurations common to anthropomorphic robotic systems. Since the PM is nonlinear
and time-varying, all controllers considered in this research were chosen because they are
known to exhibit robustness to parameter uncertainties. The progression of the research

on this project is as follows.




Chapter 2: As a first step, we are concerned with obtaining accurate mathematical
models for the PM. In this project we have utilized two similar models, both of which
were derived by the researchers at WPAFB. The models are second-order differential
equations with nonlinear coefficients. These models have aided us immeasurably in our
derivation of controllers and in simulating the closed-loop behavior of the PMs.

Chapter 3: We consider nonlinear adaptive control of PMs actuating a planar arm. The
PMs act individually in bicep and tricep configurations. The control objective is elbow
angle tracking. Simulations of the controlled system are presented.

Chapter 4: We consider single-input sliding mode control of a planar arm actuated by
two PMs acting simultaneously in opposing pair configuration, similar to human
bicep/tricep interaction. The control objective is elbow angle tracking. Simulation
results are presented.

Chapter 5: We consider two-input sliding mode control of a planar arm actuated by four
PM groups acting simultaneously in opposing pair configuration. The actuator system
consists of two agonist/antagonist pairs — one pair actuating the shoulder, and another
pair actuating the elbow. The control objective is spatial end-effector (hand) tracking.
Simulation results are presented.

Chapter 6: We derive a recurrent neuro-fuzzy model of a single PM hanging vertically
actuating a mass. The model is derived from data taken in the HSF lab at WPAFB. This
model is used in Chapter 9 to derive a very effective fuzzy controller for the PM in the

HSF lab.

Chapter 7: We present a new method for fuzzy classification that is a byproduct of our
research on this project. The method utilizes the VISIT algorithm (pioneered by the PI
and coworkers) and proposes an evolutionary method of tuning the parameters for

optimal learning.

Chapter 8: We apply the Fuzzy Model Reference Learning Control (FMRLC)
methodology to PM control. Results from applying the controller to the PM in the HSF
lab at WPAFB are presented.

Chapter 9: We derive a fuzzy P+ID controller for the PM in the HSF lab at WPAFB.
The neuro-fuzzy PM model derived in Chapter 6 is utilized, and evolutionary tuning of
controller parameters is implemented. Experimental results are presented.

Chapter 10: We derive a fuzzy model predictive controller for a planar arm actuated by
four PM groups in opposing pairs, as in Chapter 5. Simulation results are presented.




2 PM Differential Equation Models used in this Research

2.1 Introduction

Attempts have been made to model PMs in various ways, including fuzzy systems
and neural networks. In order to design adaptive and sliding mode controllers, a
differential equation model of the PM is necessary. Obtaining a DE model of the PM
from first principles of physics is difficult, due to the way the PM is constructed (see
Figure 2.1). ‘
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Figure 2.1 - Construction of pneumatic muscle

Alternatively, a DE model can be derived for a particular PM from experimentation
in the lab. The Human Sensory Feedback laboratory at WPAFB contains an
experimental PM setup that can be used to take sufficient measurements to derive models
for particular PMs. This has been done in two separate studies ([7], [17]), both resulting
in nonlinear second-order ODE models. Historically, the first of these was done by
Repperger et al. [7]. In this model, the coefficients are calculated as nonlinear functions
of the PM length. Recently, a similar model, due to Reynolds et al. [17] was derived in
which the coefficients depend nonlinearly on the PM internal pressure. In both models,

10




the coefficients depend on whether the PM is being inflated or deflated. Both models
assume an equivalent structure for the PM of a parallel connection of a nonlinear spring,
a nonlinear viscous friction, and a contractile element (Figure 2.2).

Pl g

Spring

K () Dashpot Contractile
element

B() F()

Tx

Figure 2.2 — Three-element model for PM

2.2 Repperger Model [7]
The particular PM modeled in [7, 17] has an inner bladder made from a section of

22.2 mm diameter bicycle tubing enclosed in a helically-wound nylon sheath used for
supporting electrical cables. The unstretched, uncompressed diameter of the sheath is

31.75 mm. In the Repperger model, the coefficient K (x) is a nonlinear function of the
PM length x, and B(%) is a nonlinear function of the PM rate of change of length. The

muscle is inflated (hence shortened) by opening a solenoid that controls the flow of
pressurized gas into the rubber bladder. It is deflated by opening another solenoid
venting the contents of the bladder to the atmosphere.

Figure 2.3 shows a pneumatic muscle being inflated and lifting a mass. Let the

position of the mass when the PM is uninflated be defined as x=0. If x(¢) is the
vertical position of the mass, the differential equation describing the system of Figure 2.3
is

M5+ B(®)%+K(x)x=F - Mg | (2.2.1)

where g is the acceleration of gravity. The coefficients B(x) and K(x) depend on
whether :

11




(LSS L)

Figure 2.3 — PM hanging vertically lifting a mass

the PM is being inflated or deflated and are defined as [7]

, B.(%) =0.04%2 +1.3% +12.6
Inflation: ! 2 (2.2.2)
K,(x) =1.6x> +10.9x+27.1
B, (%) = 0.12x2 + 2.49% +14.
Deflation: a0 =0 x2 +249:+14.48 (2.2.3)
| K, (x)=3.6x> +20.7x +47.23

In (2.2.1), the system input F is the upward force exerted on the mass by the PM.
It is an independent control variable that can be externally commanded by adjusting the
PM internal pressure. The force exerted by the viscous friction action of the PM is given
by — B(%)x, and the force due to the spring action of the PM is given by — K(x)x.

2.3 Reynolds Model [17]

The PM is again modeled by the 3-element mechanical model shown in Fig. 2.2,
consisting of a contractile element, dashpot, and spring. In the Reynolds model, these
three elements all have pressure-dependent coefficients. It is shown in [17] that the
system of Figure 2.3 can be modeled as

Mz + B(P)i+ K(P)x = F(P)- Mg (2.3.1)
where M is the mass lifted by the PM, B is the coefficient of viscous friction, K is the

spring coefficient, F is the force exerted by the contractile element, and g is the
acceleration of the gravity.
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According to [17], B, K and F for the specific PM considered are dependent on the
internal pressure of the PM and are given in SI units as:

F=179.2+1.39P - {2.3.2a)

K =5.71+0.0307P (2.3.2b)

(2.3.2¢)

_ [ 1.01+0.00691P (Inflation)
0.6 —0.000803 P (Deflation)

where P is the PM supply pressure in kPa. The coefficients specified in (2.3.2) are valid
in the range 206.844 < P < 620.532kPa (30 < P <90 psi) . Note that the coefficients B in
deflation are smaller than in inflation. The reason is because in deflation the PM system
vents against a constant atmospheric pressure. During inflation, however, the pressure
buildup is in a closed volume and the forcing function has to fight against the increasing
PM internal pressure as the PM inflates.

Note from (2.3.2) that the contractile force F, viscous dampmg coefficient B and
spring coefficient K are functions of P, which is the control variable, ie. P is the
independent variable that can be commanded by the controller. Therefore, in this model
the control variable enters the equations of motion via the coefficients B, X, and F, a
situation that is different from most conventional control problems.
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3 Adaptive Control of a Planar Arm Actuated by PMs in
| Bicep and Tricep Configurations

3.1 Introduction
In the adaptive control approach ([18], [19]), we utilize the Repperger model of the
'PM (2.2.1-2.2.3) [7]. In nonlinear adaptive control, parts of the model are assumed
known, and their multiplying coefficients are treated as unknown, with adaptive laws for
driving the parameter estimates to their true values. The strengths of the adaptive
approach are robustness to parameter uncertainties together with ease of implementation.
A weakness is the necessity of knowing the general form of the plant model.

3.2 Dynamic Modeling of Limbs with PM in Bicep and Tricep Positions

The two basic configurations in which the PM can be arranged for use in
exoskeletons are the bicep-type (Figure 3.1) and tricep-type (Figure 3.2) configurations.
In this chapter, the control problem for both configurations is precise control of the joint
angle of a limb which is holding a mass. Specifically, we wish to actuate the PM by
inflating and deflating it in such a way that the joint angle follows a reference function of
time while the limb holds a mass. .

PM in Bicep Configuration

Consider the limb configuration shown in Figure 3.1, which depicts an arm lifting a
mass, with the PM in the position of a bicep. The upper arm remains stationary as the
PM expands and contracts, moving the forearm. The upper end of the PM and upper arm
are attached to a motionless reference point. The mass M is held at the end of the
forearm. The forearm, which is considered massless, is attached to the upper arm by a
frictionless joint. The PM is attached to the forearm at point 4, which is a distance a
from the joint. The distance from the center of mass of the load to the joint is L. The
forearm is free to rotate through an angle @, where 6 =0° corresponds to the arm being
fully bent, i.e. the mass in the extreme upward position, and & =180° corresponds to the
arm being fully straightened, ie. the mass in the extreme downward position. For
simplicity, we will assume the PM force always acts parallel to the forearm. This
assumption is valid so long as @ is not close to either of its extremes.

Since the upward force exerted by the PM on the forearm at point 4 is
F + B(%)% + K(x)x, the clockwise torque imparted to the forearm by the PM is

(F + B(X)x+ K(x)x)asin@ . Therefore, the system dynamics are described by:

— 16 = (F + B(x)%+ K (x)x)asin 6 — MgLsin 6 o G2)

where ‘I = MI? is the moment of inertia of the mass about the joint, g is the acceleration
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of gravity, and MgLsin@ is the counterclockwise torque imparted to the forearm by
gravity. Then, using x = —a(l+cos€) and % =afsin @, we can rewrite (3.2.1) entirely
in terms of @ as follows:

NOONNNNNNN

<4— Upperarm

Figure 3.1 — Planar arm with PM in bicep position actuating elbow joint

16 =—Ba?@sin? 6+ Ka® sin 6(1 + cos @)+ MgLsin @ - Fasin 0 (3.2.2)

where B and K are now expressed in terms of @ and 4.

The external input to the system is F', which is determined by how much the PM is
inflated. Note that since F is multiplied by sind in (3.2.2), the system becomes
uncontrollable at §=0 and at # =180°. For this reason, joint angles should not
approach these limits. We will see that the tricep configuration does not have this
restriction.

PM in Tricep Configuration :
Figure 3.2 depicts an arm lifting a mass, with the PM in the position of a tricep.
The upper arm remains stationary as the PM expands and contracts, moving the forearm.
The lower end of the PM and upper arm are attached to a motionless reference point. The
mass M is held at the end of the forearm. The forearm, which is considered massless, is
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attached to the upper arm by a frictionless joint. Also at the joint is a frictionless pulley
of radius r, over which a cable connecting the PM to the forearm passes. The PM is
attached to the forearm at point 4, which is a distance ¢ from the joint. The cable makes

an angle @ =sin" 1(r/¢) with the forearm. The distance from the center of mass of the

load to the joint is L. The forearm is free to rotate through an angle &, where 6 =0°
corresponds to the arm being fully straightened, i.e. the mass in the extreme upward
position, and 8 =180° corresponds to the arm being fully bent, i.e. the mass in the

extreme downward position.
Since the downward force exerted by the PM is F + B(X)x + K(x)x, the clockwise

torque imparted to the forearm by the PM is (F + B(x)x+ K(x)x)csina. Therefore, the
system dynamics are described by:

Pulley radius=r

Pneumatic
muscle

[

Forearm

AN NSNS

Figure 3.2 — Planar arm with PM in tricep position actuating elbow joint

~-16= (F+B(5c)5c+K(x)¥)csina—MgLsinG
=(F + B(®)x + K(x)x)r — MgLsin 8 (3.2.3)

where I = MI? is the moment of inertia of the mass about the joint, g is the acceleration
of gravity, and MgLsin@ is the counterclockwise torque imparted to the forearm by

gravity. Then, using x=——;—7zr(1+cose) and J'c-—-%nrésine, we can rewrite (3.2.3) -
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entirely in terms of @ as follows:

Knr
2

2
19‘=—B’2” ésin 0 +

2
(1+cos@) + MgLsin@ —rF - (324

where B and K are now expressed in terms of & and 8. Note that the system with PM
in tricep position is controllable for all # because the force exerted by the PM always
acts at an angle ¢ to the forearm regardless of joint angle.

3.3 Adaptive Tracking for Limbs with PM in Bicep and Tricep Positions
The mass M manipulated by the PM can be expected to vary significantly from
use to use. Also, the coefficients B and K will vary with PM temperature, and from unit

‘to unit. Also, the physical distances 7, a, and L may vary from unit to unit. Therefore,

the bicep (3.2.2) and tricep (3.2.4) models are poorly known and time-varying, making -
nonadaptive control methods vulnerable to failure when used for tracking performance of
the PM. Since the nonlinear functions of @ are known in (3.2.2) and (3.2.4) and only

 their coefficients are uncertain, we utilize a method of nonlinear adaptive tracking based

on sliding control ([20], [21]). It uses a well-known result from model reference adaptive
control, which we give without proof (see, e.g. [20]).

Lemma: Consider two signals e and ¢ related by the following dynamic equation

e(t) = H(p)[k¢” @tyv(0)] (3.3.1)

where e(t) is a scalar output signal, H(p) is a strictly positive real transfer function, k is
an unknown constant with a known sign, ¢(t) is a mx1 vector function of time, and v(t)
is a measurable mx1 vector. If the vector ¢ varies according to

$(2) = —sgn(k)yev(r) (3.3.2)

' with y being a positive constant, then e(t) and ¢(t) are globally bounded. Furthermore,

if v is bounded, then e(t) -0 as t — .

Bicep Adaptive Tracking
Consider the problem of the arm lifting a mass with PM in bicep position as in

Figure 3.1. If we substitute x =-a(l+cosf) and %¥=afsin@ in (3.2.2), we get an
equation in the form
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hé + a193 sin* @+ azéz sin’ 0+a3ésm2 6 +aysin (1 +cos¢9)3

+as sin @(1 +cosB)° + agsin O(1+ cos@) +aysin@ =—Fsin

or

7
h6+Y a;£(6,0)=—Fsin @ (3.3.3)

i=l1
where h=1/a, a,,...,a, are parameters which depend on the physical properties of the
system (i.e. M, a, L, the coefficients in (2.2.2) and (2.2.3), etc.), and f,...,f; are

known functions of @ and 6.
Assume that %, a,,...,a, are unknown and it is desired that the PM angle 6(r)

track a known angle 8,(f). Define the error e(t)=6(t)—6,(t). Also define the
auxiliary signal

yr(t)=ya()—Age(t) (3.3.4)
where A, is a positive constant and the combined error
s=eé+Aye (3.3.5)

Consider a control F such that

A 7 v
~Fsin@=hy, —ks+ Y a;f; (3.3.6)

i=1

where k is a positive constant and h,&,...,&; are estimates of the unknown parameters
h,a,,...,a,. With this control law, we have the following result concerning the stability
of asymptotic tracking of the arm with PM in bicep position:

Theorem 1: Consider the PM in bicep position moving a mass (Figure 3.1).
Assume the PM spring and viscous friction coefficients are as in (2.2.2). If the force F
delivered by the PM satisfies (3.3.6), then all signals of the adaptive system are bounded
with 11_{2 e(t) = 0 provided the parameter estimates are adjusted according to

18



h =19, (3.3.7a)
4 =-nf, i=1..7 (3.3.7b)

where y is a positive constant.

Proof: It can be shown that the tracking error from control law (3.3.6) is

7
K +ks=hy, + Y a;f; (3.3.8)

i=l

where % =h—h and @ =4, —a,. This can be rewritten as

L +ia-f- (3.3.9)
p+k/h Yr < iJi | ..

This is in the form of (3.3.1) with the transfer function obviously being strictly positive
real. Therefore, we have from the lemma that all signals of the adaptive system are

bounded.
Consider the Lyapunov function candidate

~ 7 y
V = hs? +y"[h2 +Za,?] (3.3.10)

i=]

where % =h—h and &@; = d; —a;. It is straightforward to show that the derivative of ¥V
along the trajectories of the closed-loop system is given by

V=-2ks® (3.3.11)

Therefore, we have s — 0 as ¢ — oo . It follows that }1m e(t)=0. 0

Tricep Adaptive Tracking
Consider the problem of the arm moving a mass with PM in tricep position as in

Figure 3.2. If we substitute x = —%—717‘(1 +cosf) and x = %nrésin 0 in (3.2.4), we get an

equation in the form
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h6 +a,(6sin B)’ + a,(9sin 0)* + a,0sin 6 +a,(1+cosH)’
+a,(1+cosd)’ +a,(1+cosf)+a,sinf =-F

or

hé#ia,. £(0,6)=-F (3.3.12)

where h=1I/r, a,,...,a, are parameters which depend on the physical properties of the
system (i.e. M,a, L, the coefficients in (2.2.2) and (2.2.3), etc.), and f,...,f; are

known functions of € and 8.
Assume that h,a,,...,a, are unknown and it is desired that the PM angle 6(¢)

track a known angle 8,(7). Define the quantities e(t)=0(t)-6,4(), v, (t), and s as

above.
Consider a control F such that

7
~F=hj, —ks+ ) &f; (3.3.13)

i=]

where k is a positive constant and h, a,,...,a, are estimates of the unknown parameters
h,a,,...a,. Then we have the following result concerning the stability of asymptotic
tracking of the arm with PM in tricep position using the control (3.3.13):

Theorem 2: Consider the PM in tricep position lifting a mass (Figure 3.2). Assume
the PM spring and viscous friction coefficients are as in (2.2.2). If the force F delivered

by the PM satisfies (3.3.13), then all signals of the closed-loop system are bounded with
!jm e(t) = 0 provided the parameter estimates are adjusted according to

h =55, (3.3.14a)
a, =-pnf, i=L...,7 (3.3.14b)
where  is a positive constant.

Proof: The proof is similar to that of Theorem 1.

Comment 1: To implement the control laws (3.3.6) and (3.3.13) it is necessary to measure

@ and €. This should be no problem in PM applications, because these are the joint
angle and its rate of change, respectively and are easily measured.
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Comment 2: As stated above, the bicep control F is multiplied by sin @, which vanishes
as the arm approaches either the vertical-up or vertical-down position. Thus, the arm
cannot be controlled in the vicinity of these positions. For this reason, care should be
taken to avoid arm angles close to vertical-up or vertical-down for bicep control. Tricep
configuration does not have this limitation due to the fact that the force is always applied
at an angle a to the forearm, regardless of the joint angle.

Comment 3: The assumption of coefficients (2.2.2) are necessary so that the plant
parameters are constants. This assumption is equivalent to stipulating that the PM is not
allowed to deflate. This may be the case if e.g. the task is to lift a mass. If the PM were
inflating and deflating, the PM spring and viscous friction coefficients would switch
between (2.2.2) and (2.2.3). Therefore, the plant parameters would be time varying and
the proofs to Theorems 1 and 2 would be considerably more difficult. The assumptions
are technically convenient to prove the theorems, but do not appear to be necessary for
asymptotic tracking in simulations in which both inflation and deflation are involved. Of
course, the theorems also apply to the case where only coefficients (2.2.3) are assumed.

In this case the PM is not allowed to inflate but only deflate, which mJght be the case
when the task is to lower the mass.

3.4 Simulation Results

The systems of (3.2.2) and (3.2.4) were simulated using a 4th-order Runge-Kutta
algorithm with a step size of 0.01 seconds. The control for the bicep configuration is
given by (3.3.6) and (3.3.7). The control for the tricep configuration is given by (3.3.13)
and (3.3.14). The results of these simulations are given below.

Bicep Simulation
Assume a configuration as m Figure 3.1. Let L=0.5m, a=0.025m, M =50kg,

and g =9.807n_1/sec . Since a =0.025m, the full travel of the forearm from 6 =180°

(arm fully straightened) to 8 =0° (arm fully bent) corresponds to a maximum change in
length of the PM of 0.05m. This corresponds approximately to the actual capability of
the PM considered above.

The desired trajectory for the joint angle between 0 and 15 seconds is

6,4(t)=[60° + 62.5° (sin(2afjr) +sin(2,)| (3.4.1)

with f; =0.01Hz and f; =0.1Hz. Therefore, 8,(¢) is a sum of two sinusoids with
initial condition 6;(0) = 60°. This trajectory spans monotonically increasing joint angles

from 60° to approximately 110° and corresponds to the arm lifting a along the
prescribed trajectory.
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The input to the PM is given by (3.3.6) and (3.3.7) with y =3x10*, 4y =1, and

k=1. The initial parameter guesses are zero, and the initial joint angle is 42°. The
desired and actual joint angles are shown in Figure 3.3. It is seen that the arm
asymptotically tracks 6 (t) after the initial adaptation stage (approximately 4 seconds).

120 T T T T T ¥ T T T

110+

100

Desired trajectory

Angle (deg)

“——— Actual joint angle

Il 1 i 1 [ i 1

4] 2 4 6 8 10 12 14 16 18 20
Time (seconds)

Figure 3.3 - Bicep adaptive tracking, y =3x10*, 45 =1, k=1.

Tricep Simulation
Assume a configuration as in Figure 3.2. Let L=05m, r=1(0.05/7)m,

M =50kg, and g=9.807m/sec’>. Since r =(0.05/7)m, the full travel of the forearm

from 6 =180 (arm fully bent) to 8 =0° (arm fully straightened) corresponds to a

maximum change in length of the PM of 0.05m.
The desired trajectory for the joint angle is again as in (3.4.1), wh1ch corresponds to
lowering the mass along the prescribed trajectory. The input to the PM is given by

(3.3.13) and (3.3.14) with y =1x10°, Ay =1, and k=1. The initial parameter guesses

are zero, and the initial joint angle is 42°. The desired and actual joint angles are shown
in Figure 3.4. Again we have asymptotic tracking except in the initial adaptation stage.
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Figure 3.4 - Tricep adaptive tracking, y =1x10°, 1y =1, k=1.

3.5 Discussion

The simulations of PM in bicep and tricep configurations have been designed to
closely conform to use in PM-actuated exoskeletons. In an exoskeleton, there are no
rigid rods for forearm and upper arm, but the exoskeleton may possess some form of
rigidity, i.e. a rigid enclosure for a human limb. Exoskeleton PMs are arranged in
configurations very similar to human skeletal muscles, i.e. agonist/antagonist or
bicep/tricep pairs. The bicep and tricep results in this paper apply to PMs used anywhere
in an exoskeleton (arms, legs, etc.), as long as they are arranged in bicep or tricep
configurations. An exoskeleton PM in the tricep configuration must have a path over
which the PM cable passes to attach to the limb past the joint. This path has been
modeled as a frictionless pulley in this study.

In typical exoskeleton applications, the mass actuated by the PM, or the moment of
inertia of the moving joint, will vary significantly due to changing joint angles. For
instance, when moving a mass from one point to another, the arm may bend, changing the
load to the PM, which nevertheless must actuate the limb to follow a desired reference
trajectory. This situation arises in robotics as well. Also, the nonlinear spring and
nonlinear viscous damping coefficients are poorly known and change with time. This is
because with use, the PM heats up, changing these coefficients. In addition, physical
properties of the exoskeleton, i.e. arm lengths, distances to attach points, etc. may be

poorly known.
Therefore, adaptive control methods have been applied to this problem, since fixed
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controllers are less robust to parameter changes than adaptive ones. The simulations in
Section 3.4 were also carried out with a PID controller designed to give good
performance with M =50kg. If the mass remains in the vicinity of this value, the PID
gives good results. However, if the mass changes significantly, the fixed PID cannot
stabilize the system. With the adaptive controllers given in Section 3.3, M can undergo
a threefold change while retaining adequate tracking. However, the fixed PID is much
less tolerant to changes in M , failing to stabilize the system for M > 80kg.

Finally, we note that in real applications of PMs, they will most probably be
arranged in agonist/antagonist pairs, as in [4]. Therefore, there will be a bicep/tricep pair
rather than a single bicep or tricep acting alone. This would increase joint impedance and
result in a more stable joint angle control problem. The present paper is intended to study
the action of individual muscles only, without introducing agonist/antagonist interaction.

3.6 Conclusions

Dynamic models for pneumatic muscles 'in bicep and tricep configurations
actuating a mass have been derived. These configurations are very similar to exoskeleton
applications in which PMs are used to increase strength and mobility in humans. The
models are second-order and nonlinear in the joint angle. Their form makes them
amenable to nonlinear adaptive control techniques, since the nonlinear functions of the
joint angle are known, with only physical constants of the system being unknown.
Simulations of closed-loop adaptive tracking of limbs moving masses show that adaptive
control techniques are superior to fixed methods, i.e. fixed PID controllers, for this
application.
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4 Sliding Mode Control of Planar Arm with Two PMs -

4.1 Introduction
Sliding control is a very promising method of PM control. It has the advantage that

it can provide accurate tracking with bounded error in the presence of model uncertainties.
A disadvantage is that it can produce a high amount of control effort due to chattering.
This is because the control law is discontinuous across the sliding surface. For this reason,
a boundary layer is usually designed into the control law in which the control is linear in
the vicinity of the sliding surface. Sliding mode control is ideal for PM control because
the PM model is usually poorly known, nonlinear, and time-varying, necessitating some
type of robust control strategy. This accounts for the success of adaptive, variable-
structure, and soft computing approaches also.

In this chapter, the control problem is elbow angle tracking for a planar arm. The
elbow is actuated by a pair of opposing PMs, one in bicep and one in tricep position. We
first derive a mathematical model of the arm with antagonistic PM actuators, then
formulate the sliding mode controller to produce accurate tracking of the elbow angle.
We address the important problem of bicep/tricep static internal pressures producing
stable arm motion when control is absent. Finally, we present the results of computer
simulations of the arm under the conditions of different actual arms (hence different truth
models), and temperature variations.

4.2 Planar Arm Dynamic Model ‘

In this chapter, the PM is modeled with the Reynolds model (2.3.1), (2.3.2). From -
(2.3.1), the total force exerted by the PM on the mass is F' — Bz — Kz. The internal
pressure P of the PM is an independent control variable that can be externally commanded
by adjusting the inflation and deflation solenoids. If several PMs are present, each one
has its own F', K, and B coefficients, its own internal pressure P, and its own inflation or
deflation status. In this chapter, we assume all PMs are identical so their coefficients are
the same.

Consider the planar manipulator configuration shown in Figure 4.1, which depicts an
arm actuating a mass with PMs in bicep and tricep positions. The upper arm remains
stationary as the PMs expand and contract, moving the forearm. The upper ends of the
PMs and upper arm are attached to a stationary reference point. A mass M is held at the
end of the forearm. The forearm, which is considered massless without loss of generality,
is attached to the upper arm by a frictionless revolute joint, or "elbow." The PMs are
attached to the forearm at point A, which is a
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Tricep PM

Bicep PM

Figure 4.1 - Planar arm with PMs in bicep/tricep positions

distance a from the joint's axis of rotation. The distance from the center of mass of the
load to the joint is L. Also at the joint is a frictionless pulley of radius r, over which a
cable connecting the tricep PM with the forearm passes. The tricep cable makes an angle
o = sin~!(r/a) with the forearm. The forearm is free to rotate through an angle 6, where
@ = 0° corresponds to the arm being fully straightened, i.e. the mass in the extreme
downward position, and § = 180° corresponds to the arm being fully bent, i.e. the mass in
the extreme upward position. If the bicep PM contraction is z;, and the tricep PM
contraction is z;, we have z; = a(1 — cosf) and z; = a(1 + cosf).

Let the bicep PM internal pressure be P, and the tricep PM internal pressure be P;.
Also let the bicep PM coefficients be Fy, B, K}, and the tricep PM coefficients be F;, By,
K;. Then, from (2.3.1) the clockwise torque exerted by the bicep PM on the forearm is
(Fy(Py) — Ki(Py)zy — By(Py)Zp)asingd and the counterclockwise torque exerted by the
tricep PM is (Fy(P,) — K{(P,)z; — By(P,)&;)r. The equations of motion of the system
of Figure 4.1 can be derived by summing torques about the elbow [22]:

I.H. = (Fb — Kbmb — Bbafb)asinH - (E - Ktxt — Bt:i:t)'r - MgLSlnB (4.2.1)
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where I = ML? is the moment of inertia of the mass about the elbow, g is the
acceleration of gravity, and MgLsind is the counterclockwise torque imparted to the
forearm by gravity acting on the mass. Note that since the bicep force is multiplied by
asind, the bicep loses controllability at § = 0° and § = 180°. For this reason, the arm
angle should be kept away from these extremes. This situation could be avoided, e.g. by
wrapping the bicep cable around the elbow pulley also. The tricep does not suffer this
drawback since its cable always makes an angle of a = sin™!(r/a)with the forearm
regardless of 6.

From (.32), let F,=FR+FRP, F,=FK+FP, K,=K)+K;F,
Kt = KO -+ Klljt, Bb = Bo + Blpb, and Bt = Bo + Bl-Pt where Fo = 179.2,
F, =1.39, Ky =5.71, K; = 0.0307, and By, B; depend on whether the PM in question
is being inflated or deflated, as follows:

1.01, inflation v

Bo= {0.6, deflation (4.2.29)
0.00691, inflation |

Bi= { — 0.000803, deflation (4.2.2b)

The internal bicep and tricep pressures P, and P; are the control variables that can be
independently commanded by the controller as inputs to the system. Note that the PM
dynamics depend on whether the PM is being inflated or deflated.

Let us assume that the bicep and tricep internal pressures are given by

P, = Py + Ap (4.2.33)

P,=Pgy—Ap (4.2.3b)

where Py is a nominal constant internal bicep PM pressure, P, is a nominal constant
internal tricep PM pressure, and Ap is an arbitrary function of time. With the definitions
in (4.2.3), (4.2.1) can be written as a single-input single-output system, with input Ap and
output 6. 3

According to (4.2.3), the tricep deflates when the bicep inflates and vice versa.
Therefore, one set of B parameters will apply to one of the PMs while the other set
applies to the other PM at a given time. When the inflation/deflation status of the PMs
changes, they trade B parameters. We denote the bicep B coefficients as By, and By,
and the tricep B coefficients as By; and By;.
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4.3 Bicep and Tricep Nominal Pressures for Desired Equilibrium Angle

In order that the arm has a stable equilibrium at an angle 6., we seek to balance the
steady-state clockwise and counterclockwise torques about the elbow by choice of bicep
and tricep nominal pressures Py and P,y. From (4.2.1), the total steady-state clockwise
torque is : :

Tew = [F1 Py — (Ko + K; Pyo)a(1 — cosf)]asind 4.3.1)
and the total steady-state counterclockwise torque is
Tee = [F1 Py — (Ko + K1 Py)a(1 + cosd)|r + MgLsind (4.3.2)

for a constant angle §. Equating these torques at a desired equilibrium angle 8, results in
the following relationship between Py and Pyy:

Po=mPy+c (4.33)
where
m = [F} — Kja(1 + cosb,)|r/D (4.3.4a) -
¢ = (MgLsing, — Kyar(1 + cosb,) + K0a2(1 — cosb,)siné, )/ D (4.3;4b)
and

D = [F; — K;a(1 — cosb,)|asind, (4.3.5)

Note that the denominator D is nonzero for all arm angles in the open interval (0, 7).
Thus we have a relationship between the nominal bicep and tricep pressures that
depends on the system coefficients, the mass M, and the desired equilibrium angle.
Therefore, one of them (say P,;) may be chosen arbitrarily, and the other (Py) is
determined by this choice. These nominal pressures will be used in equations (4.2.3) to
determine the total bicep and tricep pressures. The significance of these nominal pressures
is that if the control input Ap = 0, the elbow angle reverts to the equilibrium angle 6,,
thus it is well-behaved even if the control loop is opened. In practice, these pressures
could be easily determined experimentally, e.g. by setting P, to some nominal value, then

1
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adjusting Py until the desired equilibrium arm angle is obtained. In our simulations
below, we arbitrarily choose 6, = 90°. -

4.4 Sliding Mode Control for Planar Arm with PMs in Bicep/Tricep Positions
Combining (4.2.1) with the above relationships for F', B, and K, we obtain the

follbwing 2nd order equation describing the system of Figure 4.1:

8 = £(0,0) + b8, 0)Ap (4.4.1)
where
6 |
£(6,6)=) f:£:(6,8) (4.4.22)
i=1
6
b(6, =) b:£:(6, 6) (4.4.2b)

i=1

‘with & = Osin20, & = sinf(cosf — 1), & = Bsinf, & = 1+cosh, & =sind, & =1,

fl = ('— BbO - BbIPbO)az/Is f2 = (KO + Kl—PbO)az/I, fs = ( - BtO - BﬂPto)ar/I,

fs = (Ko + K1 Py)ar/I, fs = (aF1 P — MgL)/I, fo = — FyPyr/I,
b1 = — Blba2/I, bz = KlaZ/I, b3 = Bltar/I, b4 = - Klar/I, b5 = Fla/I, and
b6 = F17"/I.

Because of our imperfect knowledge of coefficients F', K, and B, we must assume
that £(6, 9) and b(6, 8) in (4.4.1) are imprecise. Assume the extent of the imprecision on
f can be bounded by a known continuous function of § and 6. Similarly, we assume that
the extent of the imprecision on b can be bounded by a known, continuous function of §
and . The control problem is to get the elbow angle 6(t) to track a desired trajectory
6*(t) in the presence of model imprecision on fand b.

Assume we have an estimate ?(0, 0) of f and let F(6, 8) be a positive function such

that
If-fI<F (4.4.3)

Further assume the control gain b(6, §) is unknown but that we have upper and lower
bounds for it, i.e. we have quantities bmin and bmax such that 0 < byin < b < bmax Where
bmin and bpyax may depend on 6 and 6. Define
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T=V bmax/bmin (4.4.4)

Let the estimation of b be b = v/ Dminbmax -
Let 6*(t) be a smooth function of time that represents the desired angular trajectory

for the elbow angle. Consider the sliding surface ¢ = 0, with
o=0 +ud ‘ (4.4.5)

where § =6 — 60" is the tracking error and g is a scalar design parameter. Then the
sliding mode control law is given by

Ap= 8P q%at(o/T)) 4.4.6)

whére
Ap=(-F+6 —uf) 4.4.7)
g2 Y(F+e)+(v-1)| Ap| (4.4.8)

€ is a positive constant, and T is the thickness of a "boundary layer," which is a
neighborhood of the sliding surface introduced to reduce control chattering. Thus the
boundary layer is defined by B = {(6, 8) : |o(8, 8)| < T}. We have the following result
concerning the tracking accuracy of the above closed-loop system.

Theorem: Consider the planar arm with PMs in bicep/tricep configuration (Figure
4.1). Let the bicep and tricep pressures be as in (4.2.3) and (4.4.6) where 6*(t) is a
smooth function of time such that 6*(t) € (0, ) Vt. Then the elbow angle 8(¢) satisfies

N

im sup |0(t) — 6*(1)] < = (4.4.9)

tO_)OOtZto

=
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Proof- 1t is straightforward to show that the surface o = 0 is a moving straight line
of slope — p in (8, §) space passing through the moving point (6, 6"). Consider the
trajectory for an arbitrary initial condition §(0) outside the boundary layer, i.e. such that
|o(0)] > T Differentiating (4.4.5) and using (4.4.6) with |o| > T, we have

[~ 57 + (b= B)(#" - i ) — basen(o)]

s=1+ = (4.4.10)
Evaluating the derivative of V' = —02 in the region |o| > T, we have
o { £y [T 0BF — i) ~ basen(o)] }
b
—o(f—8b f)+o(l—85 )~ +u8 )~ qlol 4.4.11)
Then we have
V < —¢lo] | (4.4.12)
provided
g>eb b+ |b’13f —FH B —1)(— 8 + b)) (4.4.13)
Using (4.4.3), we have that (4.4.13) is satisfied if
g > eb b+ b 6F + o715 — 1||F — 6" + 46 | 4.4.14)

Since v > b~1b , we have that (4.4.14) is satisfied if ¢ is as in (4.4.8). Thus the state
trajectory approaches the boundary layer for all initial conditions outside it.

Now consider an arbitrary point (6(0), #(0)) such that |(6(0), 8(0))| > T, and let
t7 be the time taken for the system trajectory to reach the edge of the boundary layer from
this point. Integrating (4.4.12) from ¢ = 0 to ¢7 and considering initial points (6, 8) on
both sides of the boundary layer results in
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tr < 2o (0)]  (4.4.15)

Therefore, from any initial state (6, §) outside the boundary layer, the system trajectory
reaches the boundary layer in a finite time, and (4.4.12) guarantees that the boundary layer
is invariant, ie. |o| < T, Vt > tr.

Fort > tp, we can use (4.4.5) to find the Laplace transform of 8 (¢):

o 1
0 = 4.4.1
() = s550() (4.4.16)
which, together with the fact that |o| < T, Vt > tr,, easily yields (4.4.9). O

Therefore, we have that the sliding mode control law (4.4.6) guarantees that the
state trajectory reaches the boundary layer in a finite time whatever the initial state, and
inside the boundary layer constrains trajectories to stay inside it for all later time and

approach a neighborhood of 7 =0 asymptotically as ¢ — oo (4.4.9). Asymptotic
tracking of the elbow angle to within a guaranteed accuracy is therefore obtained in spite
of modeling errors which may be present in PM coefficients, masses, distances, etc.

4.5 Simulation Results :

The planar arm of Figure 4.1 with PMs in bicep/tricep pair configuration is
simulated using a 4th-order Runge-Kutta algorithm with a step size of 0.01 seconds. Let
L =04572m, a = 0.1016 m, and r = 0.0762 m.

We investigate closed-loop tracking performance for two reference trajectories.
One of these is a sum of sinusoids and the other is a square wave-type function with
smooth transitions between constant values rather than discontinuous jumps. We begin
with a nominal plant model and assume the true system is within £50% of this nominal
model. We observe the tracking performance for three different actual plants within this
range, with the three plants defined by choosing all B, K, and F coefficients randomly
within this range. We also simulate temperature variation effects by letting the coefficients
B and K decrease slowly over the time of the simulation. This simulates the effect of the
PM's temperature increasing with use over time. For all simulations, we choose

g = L1[y(F +€) + (v — 1)| Ap]], satisfying (448).
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Modeling Errors
Case 1: The desired trajectory for the joint is

o (t) = g + 0.5(sin(27 fy) + sin(27 fyt) + sin(2m ft)) (4.5.1)

with f; = 0.02 Hz, f, = 0.05 Hz, and f; = 0.09 Hz.
Let M = 21.89 kg, 4 = 10 and € = 10 (u and € chosen by trial and error to yield

good performance). We choose the boundary layer thickness as ' = 1. From (4.4.9), we
have that the guaranteed tracking precision is 7'/p = 0.1 radians. Also let P,y = 275.79
kPa (40 psi), Py = 371.49 kPa (53.88 psi) for a 6, of m/2, satisfying (4.3.3).

Assume that the true values of (6, 8) and b(8, ) in (4.4.1) are known to fall within
& 50% of the best estimates we have of them, which are [ (9, ) and b(0 6). Then we

have F' = 0. 5|f| bmax = 1. 5b, byin = 0. 5b, and -y is determined as 1.7321 by (4.4.4).

The sliding control input to the PM is given in (4.4.6) with parameters deﬁned as
above. The tracking performance for a typical actual arm within +50% of the model f ,
is shown in Figure 4.2. Figure 4.3 shows the tracking errors for three different actual
arms f, b within this range, using the same controller. It is seen that for all systems the
tracking error is within predicted bounds.
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Figure 4.2 - Tracking performance, M = 21.89 kg.
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Figure 4.4 shows a typical control effort Ap for the above controller. It is evident
that input pressure varies smoothly without any obvious chattering. Therefore, by using
the sliding mode controller, the arm with PMs in bicep/tricep configuration achieves
desired performance with good tracking precision and no obvious chattering for all three

actual arms.
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Figure 4.4 - Control effort, M = 21.89 kg.

In practical applications, it may be expected that the mass actuated by the arm will
change. To investigate the robustness of the sliding controller to changing masses, we
decreased the mass M by a factor of 3 to 7.30 kg and used the same controller as above.
Figure 4.5 shows tracking errors for three different actual arms randomly chosen within
the +50% range. Tracking error is again within predicted bounds.
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Figure 4.5 - Tracking errors for three different actual plants, M = 7.3 kg.

Figure 4.6 shows a typical control effort when M = 7.3 kg. Note that the control effort
is smaller than the M = 21.89 kg case, which is to be expected since a lighter mass is

being moved.
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Figure 4.6 - Control effort, M = 7.30 kg.

The mass actuated by the arm will be practically limited, because very heavy masses
would require the input pressure Ap to make the bicep and/or tricep pressures go outside
the allowed range of PM internal pressure (206.84 - 896.32 kPa in this simulation). These
limits would have the effect of a saturation nonlinearity on the PM input. The limitation
on Ap is not the sliding controller's shortcoming; it is merely an acknowledgment of the
practical constraint that the PM internal pressure must be kept within reasonable bounds
to protect against actuator failure. If more force is desired, several PMs can be placed in

parallel.

Case 2: To further verify the sliding mode controller, another simulation is performed to
track a pseudo-square wave signal with a typical system within the +50% range. Here,

the desired trajectory is

3n/4, sin(2mf1(t — 3)) > 1
g*(t) =< % +msin(2nfi(t —3)), |sin@wfi(t—3)| < X 4.5.2)
/4, sin(2rfi1(t —3)) < — %

with f; = 0.1 Hz. This function transitions between constant values of 7/4 and 37 /4
smoothly rather than with discontinuous jumps. For the design parameters, we used



p=10, €=10, and T =0.3. Therefore, the guaranteed tracking accuracy is
T/p = 0.03 radians. We chose Py = 637.29 kPa and P, = 206.84 kPa for this
simulation. These were chosen so that adequate tracking could be achieved with PM
pressures in the permissible range.

Figures 4.7 and 4.8 show the tracking performance. Figure 4.8 indicates the
tracking error exceeds that predicted by the theorem, i.e. the spikes in Figure 4.8 exceed
the predicted maximum of 7'/p = 0.03. Figure 4.9 shows the control input Ap, which is
seen to saturate at approximately 206.84 kPa and — 689.48 kPa. These are values of Ap
that cause the bicep or tricep PM pressure is go outside the allowed pressure range with
the values of Py, and P, above. The spikes in Figure 4.8 occur at times of input
saturation, i.e. at these times the full input pressure dictated by the sliding mode controller
is not applied and tracking accuracy is lost. For this reason, care should be taken to insure
that PM pressure commanded by the controller will always be within the permissible range
- for the PM. This requirement on control effort is always present in any practical control
system. Again, if more force is needed, several PMs should be used in parallel.
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Figure 4.7 - Tracking performance, M = 21.89 kg.
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Heating Effects

When the PM is operated for extended periods of time, friction results in heating of
the rubber bladder, changing its characteristics. We assume this has the effect of
decreasing the B and K coefficients of the PM, thus decreasing the needed control effort
to perform a task. This is due to the fact that the friction and spring effects opposing the
PM motion are decreased as B and K decrease.

Assume the cold values of the PM coefficients are 1.5 times the nominal values
given in Section 2, and over a period of 60 seconds of operation these values decrease
linearly to 0.5 times the nominal values. Applying the sinusoidal reference signal of Case 1
above with M = 21.89 kg and the same controller as above, the elbow angle is nearly
indistinguishable from the reference trajectory, i.e. tracking performance is excellent and
well within predicted bounds. This is to be expected since with changing coefficients the
arm becomes a slowly time-varying system. It is well-known that slowly varying systems
pose no problem for sliding mode controllers [20]. Figure 4.10 shows the control input
Ap. Comparing Figure 4.10 with Figure 4.4, the effects of the decaying B and K
coefficients is seen as the control effort must be larger in the beginning due to larger B
and K coefficients, but decreases toward the end as B and K decrease.
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Figure 4.10 - Control effort with heat effects, M = 21.89 kg.



5 Sliding Mode Control of Planar Arm with Four PMs

5.1 Introduction
The high power/weight and power/volume ratios of PMs, in conjunction with their

contractile nature (i.e. their inherent extensibility when activated), could make these
actuators extremely useful in a variety of rehabilitation engineering applications for
persons with neuromuscular or musculoskeletal pathologies that affect extremity function.

Disorders that limit or hinder extremity function can include stroke, traumatic brain injury,
amputation, and spinal cord injury. These conditions are associated with a number of
functional deficits, including weakness, paralysis, limb loss, and joint contracture
associated with spasticity and/or hypertonia. Individuals with such deficits could
potentially benefit from powered devices that provide joint loading to generate or assist
extremity motion, or maintain extension of muscles with contractures.

Many potential applications involve some type of exoskeletal or link segment.
conﬁguratlon that attaches to existing anatomical body segments ([6], [23]-[26]). Devices
of these types have often been relegated to use within a specific location (i.e. laboratory
setting), or have limited actuation to small segments at the hand/wrist. Lower
power/volume ratios of traditionally used power sources could hinder the use of powered
exoskeletal orthoses, for larger extremity segments, in more general settings. Utilization
of PMs to power exoskeletal devices, which interface with persons who have functional
deficits, could potentially reduce size and weight sufficiently to facilitate more widespread
use of such devices.

It should also be noted that traditional actuators, such as electric motors, are
typically rigid in nature. Such actuators can create uncomfortable or painful conditions
when interfacing with humans. For example, if an exoskeletal brace, actuated by a stepper
motor pulley arrangement, is activated to extend a contracted joint to some desired angle,
and a flexor spasticity episode occurs, the stepper motor will rigidly hold its position and
not permit joint flexion. Such a response could result in pain and discomfort among
patients with joint contractures associated with spasticity. Conversely, activated PMs
maintain inherent extensibility, which could permit some joint flexion during muscular
loading due to episodes of spasticity. While the elastic properties of PMs can complicate
the control aspects of these actuators, they can potentially contribute to more comfortable.
devices when interfacing with human limb segments.

Sliding control has the advantage that it can provide accurate tracking with bounded
error in the presence of model uncertainties. Sliding mode control is ideal for PM control
because the PM model is usually poorly known, nonlinear, and time-varying, necessitating
some type of robust control strategy. This accounts for the success of adaptive, variable-
structure, and soft computing approaches also.

This chapter considers end-effector (hand) control of a planar arm actuated by four
PMs. Two PMs in agonist/antagonist configuration actuate the shoulder joint, and two
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PMs in agonist/antagonist configuration actuate the elbow. The contributions of this
chapter include modeling of the arm with four PM actuators, formulating the model so
that it is suitable for sliding mode control, determination of static internal pressures for
stable arm behavior in the absence of a control signal, and extensive simulation results
including the effects of changing temperatures.

5.2 Planar Arm Dynamic Model _
In this chapter, the PM is modeled with the Reynolds model (2.3.1), (2.3.2). From

(2.3.1), the total force exerted by the PM on the mass is
¢ = F(P)— B(P)z — K(P)z (5.2.1)

The internal pressure P of the PM is an independent control variable that can be externally
commanded by adjusting the inflation and deflation solenoids. If several PMs are present,
each one generally has its own F', K, and B coefficients, its own internal pressure P, and
its own inflation or deflation status.

If a pair of such PMs is tied together around a pulley of radius r as in Figure 5.1,
with the connecting line rigidly attached to the pulley to prevent slipping, the torque
~ imparted to the pulley by the PM pair is

Tiotal = Tp — Tt = (P — Do)7 (5.2.2)

where 73, and 7; are the torques due to each individual PM and are given by

7, = (Fy — Kyxy — Bypdp)r (5.2.3a)

7 = (F; — Kyz; — Byaoy)r (5.2.3b)

In (5.2.3), z; is the length of PM b and z; is the length of PM £.
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Figure 5.1 - Two PMs tied together around a pulley

The lengths of the arrows in Figure 5.1 are indicative of the forces exerted by the two
PMs. Thus, ¢, > ¢; and the torque exerted on the joint is clockw1se The total torque
delivered to the pulley is given by

Ttotal = (Fb - wab - Bb."Bb — E -+ Ktw, + Btibt)’l‘ (5.2.4)

where Fj, K3, and By, depend on the internal pressure of PM b and F3, K, and B; depend
on the input pressure of PM t according to (2.3.2). ‘

The lengths z;, x; can be expressed in terms of the pulley angle  since the pulley
radius is known. We will find it advantageous to do so in order to formulate a two-input
sliding mode controller for the planar arm actuated by opposing-pair PMs.

5.3 Dynamics of Planar Arm Actuated by PMs

Consider the manipulator configuration shown in Figure 5 2, which deplcts a two-
joint planar arm. In this figure, 6; denotes the angle of joint i, m; denotes the mass of link
i, l; denotes the length of link i, I,; denotes the distance from the previous joint to the
center of mass of link i (center of mass is denoted by a small dot), and I; denotes the
moment of inertia of link 4 about an axis coming out of the page, passing through the
center of mass of link 7.
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Figure 5.2 - Planar arm

The dynamics of this system are well-known [20] to be described by:
D0 +C(0, 00+ f6) =1 (5.3.1)

where 8 = [0, 6,)7 and T = [r,, 7|7 is a matrix of input torques. The nonsingular inertia
matrix D(8) is '

_|du dio
Do) = [ i dzz]' (532

where
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du =m l(2:l + my (l% + ng + 21116200802) + Il + Iz (5333)
d12 = dgl = mg(lzz + lllcz(}Ong) (533b)
dgg = mzl§2 + Iz (5330)

and I; = m;l%, i = 1, 2. The matrix C(6,0) is given as

; hO, kO, + RO, ] | |
c(6,0) = A 534
wo=| "5 " (5:3.4)
with b = — myl;losind,. The vector f(8) is given by f(8) = [f1, f2]7 where.
fi = (myly + maly)geost; + molagcos(; + 62) (5.3.5a)
J2 = malogcos(6; + 63) . (5.3.5b)

and g is the acceleration of gravity.

The arrangement of PMs on the manipulator is shown in Figure 5.3. The base (or
torso) is fixed. At the top of the torso is the shoulder revolute joint, which is a pulley.
The upper arm is attached to the shoulder joint, which is rotatable through an angle
— £ < 6; < 3. Atthe end of the upper arm is the elbow revolute joint, which is another
pulley. The forearm is attached to the elbow joint, which is free to rotate through an angle
0< 6, <m.
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Figure 5.3 - Arm with PMs

Assume there are n, pairs of matched PMs (i.e. all PMs have identical coefficients
and lengths) tied together around the shoulder pulley (radius r,) with all tricep PMs
recieving the same input pressure P;, and all bicep PMs recieving the same input pressure
P,. Similarly, assume there are n, pairs of matched PMs tied together around the elbow
pulley (radius ) with all tricep PMs recieving the same input pressure Fy. and all bicep
PMs recieving the same input pressure P,,. We do not assume the elbow PMs are
matched to the shoulder PMs, however. The assumption of matched PMs is rather
idealistic. However, if care is taken to keep constrution of individual PMs the same and'of
the same materials and dimensions, the assumption of matched PMs may not be too
€IToneous. :

In Figure 5.3, the shoulder and elbow torques 7, and 7, can be expressed as in
(5.2.4):

Ts = ns(Es - stts - Btsj:ts - Es + Ksmbs + Bbsibs)rs (536&)



Te = ne(Fe - Kexbe - Bbej:be - Fe + Kemte + Btei'te)re (536b)

where F., K,, By,, and By, (Fe, K., By, and By,) are the coefficients for the shoulder
(elbow) PMs, ¢ subscripts denote tricep PM quantities, b subscripts denote bicep PM
quantities, s subscripts denote shoulder PM quantities (ie. PMs located on the torso
actuating the shoulder), and e subscripts denote elbow PM quantities (i.e. PMs located on

the upper arm actuating the elbow).
A shoulder angle of §; = — m/2 corresponds to the shoulder tricep PMs being

fully lengthened and the shoulder bicep PMs being fully shortened, and 6, = + /2
corresponds to the shoulder tricep PMs being fully shortened and the shoulder bicep PMs
being fully lengthened. Therefore, the PM lengths and z, can be expressed in terms

Ofgl as :
Zys =150 + §) - (5.3.7a)
Tps = T5(5 — 61) (5.3.7b)

Similarly, with #, = 0 corresponding to full shortening of the elbow tricep PMs and full
lengthening of the elbow bicep PMs, and 6, = 7 corresponding to full lengthening of the
elbow tricep PMs and full shortening of the elbow bicep PMs, the PM lengths ;. and z.
can be expressed in terms of 8, as ‘ _

Tpe = Te(m — 62) (5.3.8a)

Zpe = Tl (5.3.8b)
Let the input pressure of the shoulder bicep and tricep PMs be

Py; =-Pops + Aps (5.3.9a)

Py = Py, — Aps | (5.3.9b)

where Py, and Py, are arbitrary positive nominal constant pressures and Ap, is an
arbitrary function of time that is commanded by the controller. With these definitions, the
set of n, shoulder antagonist pairs becomes a single-input system with input. Ap;. When
the bicep input pressure increases, the tricep input pressure decreases and vice versa,
varying the torque on the shoulder joint. The nominal constant pressures Fop; and Fos
are arbitrary and can be chosen so that (1) the shoulder joint is well-behaved in the
absence of a control signal Ap,, and (2) desired joint stiffness is produced (see Section
5.4). Similarly, let the input pressures of the elbow PMs be defined as

Py = PObé + Ap, | (5.3.10a)



P,. = Pye — Ape (5.3.10b)

where Poye, Pote are arbitrary positive nominal constant pressures. With these definitions,
the set of ., elbow antagonist pairs becomes a single-input system with input Ap,. Thus,
with the PM input pressures defined as in (5.3.9) and (5.3.10), the 2-DOF planar arm of
Figure 5.3 is a 2-input system with input Ap; determining the shoulder torque 7, and
input Ap, determining the elbow torque 7.

With definitions (5.3.6)-(5.3.10), we can write the shoulder _and elbow torques as
Ts = Tos + T1sAPs (5.3.11a)
Te = Toe + T1eAPe (5.3.11b)
where

Tos = Ts [FOs + FlsPOts - (KOS + KlsPOts)xts - (BOts + BltsPOts)i:ts
- F()s - FlsPObs + (KOS + KlsPObs)zbs + (BObs + BlbsPObs)ibs] Ts (53'12a)

Tis = s [ - Fls + Klsxts - Blts:i:ts - Fls + Klsxbs + Blbsibs]rs (53-12b)
Toe = T [Foe + FiePose — (Koe + K1ePove)Zse — (Bobe + Bive Pove)Eve

- FOe - FlePOte + (KOe + KlePOte)xte + (BOte + BltePOte)ite] Te (53120)
Tie = Ne[Fie + KieTe — BiveTre + Fie — KieTte + Bisedse]Te (5.3.12d)

In (5.3.12), Bows, Bits» Bobs> Bisss Boses Bive, Bowe and By, are the appropriate
coefficients from (2.3.2c), depending on whether the PMs are being inflated or deflated.
Combining (5.3.1) - (5.3.12), we can arrive at the following model for the planar

arm actuated by four PM groups as in Figure 5.3:
6 m] [Am]
o= G 3.
S e s (53.13)
where
a1 | _ —h Tos
[az] =D ( co—f+ [TOeD (5.3.14)

and



G =D} [T(l)s T?e] (5.3.15)

Note that a;, ay, and G are functions of 6;, 8,, 65, and 6,.
The planar arm actuated by n, + n, pairs of PMs in opposing pair configuration
modeled as in (5.3.13) is now in a form which can be handled by multi-input sliding mode

control methods.

5.4 PM Nominal Pressures for Desired Equilibrium Position of Planar Arm
In this section we find nominal pressures Po;s, Pobs, Fotes Pove such that the arm

has an equilibrium point at a desired constant shoulder angle 6;, and an elbow angle 6y,.
We do this in order that, if control is lost, the arm will revert to the desired equilibrium
position. Another reason to do this is to produce desired stiffness in the joint. In order to
find proper nominal pressures, we find relationships between them to balance the steady-
state clockwise and counterclockwise torques about the shoulder and elbow as functions
of the desired equilibrium joint angles. For this analysis, we assume all PM coefficients
are exactly known. If they are not, see the end of this section. .

From (5.3.6)-(5.3.8) and (5.3.12), the total steady-state clockwise and
counterclockwise torques about the shoulder in Figure 5.3 are

Tsew = Ns[Fos + Fis Pops — (Kos + JK'I.'sI:)Ob.s‘)T.s('72I - aleq)]rs + 712 (5-4.1a)
Tscew = Ts [FOS + FlsPOts - (KOs + KlsPOts)Ts(aleq + ‘72'[)]7‘.9 (541b)

where

T2 = (mllcl + mzll)gcosﬂleq + mglczgcos(ﬂleq + 02eq) (542)

is the clockwise torque imparted to the shoulder by gravity, and r; is the radius of the

shoulder pulley. _ _
Equating the clockwise and counterclockwise torques results in the following

relationship between Pyys and FPoys:

Pyis = ms Pops + 5 .‘ (5.4.3)

where
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s
mg = [Fls - Klsrs(‘z— - eleq)]/As (5.4.4a)
Cs = (2KOsTs01eq + 712/nsrs)/As (5.4.4b)
and

™
As = Fls - Klsrs (eleg + 5) . (5-4-5)

Similarly, the total steady-state clockwise and counterclockwise torques about the
elbow are _

Tecw = M [FlePOte - (KOe + Ifle-POte)"‘e@r - 02eq)]re + T2 (5.4.6a)
Teccw = ne[lplePObe - (KOe + KlePObe)'re02eq]re (546b)

where

Ty = Mipl2gcos(Oeq + O2¢q) (5.4.7)

is the clockwise torque imparted to the elbow by gravity, and 7. is the radius of the elbow
pulley. _
‘ Equating these torques results in the following relationship between Fype and Fyze:

Pope = meFote + Ce (5.4.8)

where
me = [F e — KieTe(m — 92eq)]/ A, (5.4.9a)
Co = [Koere(202eq -7+ 7 /nere] JIAW | - (5.4.9b) '
and
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Ae = Fle - Klereo2eq ) (5.410)

Thus we have relationships between the nominal bicep and tricep pressures for
shoulder and elbow joints that depend on the system coefficients and the desired
equilibrium angles. Therefore, for a given shoulder equilibrium angle 6.4, one of the
nominal shoulder pressures (say Fp;s) could be chosen arbitrarily in (5.4.3), and the other
(Pots) determined by this choice. Similarly, for a given elbow equilibrium angle 6.4, Fo;e
could be chosen arbitrarily in (5.4.8), and Py, determined by this choice. These nominal
pressures will be used in equations (5.3.9) and (5.3.10) to determine the total PM
pressures. The significance of these nominal pressures is that if the control inputs
Ap, = Ap, = 0, the arm orientation reverts to the equilibrium angles 6;.,, 8.,. Thus the
arm is well-behaved even if the control loop is opened.

In practice, if the exact PM coefficients are unknown, these pressures could be
easily determined experimentally, e.g. by first setting, say Py, and Py, to some nominal
values, then manually adjusting FPy;; and Py, until the desired equilibrium arm orientation
is obtained. In our simulations below, we arbitrarily choose 81, = — /4, O3y = /2.

It should be noted that larger nominal pressures increase joint stiffness and
decrease joint compliance. An advantage of decreasing joint compliance is reduced
susceptibility of the arm to impact disturbances such as unintended hitting of the arm or, in
case of exoskeletons, unintended limb motions, which might decrease tracking accuracy.
A disadvantage of decreased compliance is less flexibility in the arm, increasing the
chances of discomfort and possible damage when the arm comes in contact with humans
or equipment, or in the case of exoskeletons, greater discomfort in the event of limb
spasms. _

Nominal pressures are also important when considering the total PM pressures that
will be necessary to accomplish a given task. PM pressures are practically limited to lie
between maximum and minimum values, depending on the PM. Howeyver, a given task of
the arm can be accomplished with any nominal pressure, if joint stiffness is not a concern.
To keep all PM pressures within the allowable range, it is generally necessary to adjust the
nominal PM input pressures as well as the number of parallel PMs actuating a joint. The
necessary pressures will depend on the tracking task and the mass to be actuated by the
arm. For instance, in the simulations at the end of this chapter, the link masses are both 10
kg. In order to accompish the tracking tasks while keeping all PM pressures within the
allowable range for the PMs under consideration, ie. 206.844 <P < 620.532 kPa
(30 < P < 90 psi), it is necessary to use 6 pairs of PMs actuating the shoulder and 3 pairs
for the elbow, with Py = Ppe = 310.3kPa (45 psi), Pots = 449.6kPa (65.2 psi), and

- Pope = 310.5 kPa (45 psi), satisfying (5.4.3) and (5.4.8).
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5.5 Two-input Sliding Mode Control for Planar Arm Actuated by Four Groups of

PMs
Consider the model (5.3.13)-(5.3.15) of the planar arm actuated by four PMs.

Because of our imperfect knowledge of coefficients F', K, and B for all PMs, we must
assume that a;(6, 0), ay(0, 8), and G(0, ) are imprecise. Let the extent of the
imprecisions on a;, a3, and G be bounded by known continuous functions of 6, 6y, 05,
and 0,. The control problem is to determine torques 7, and 7, to force the end effector
(i.e. the end of the forearm) to follow a desired path in the spatial variables = and y (see
Figure 5.2) in the presence of model imprecision on a;, ay, and G. It is straightforward to
convert this into a tracking problem for the shoulder and elbow joint angles 6,(t) and
6,(t) using the inverse kinematics of the arm.
Assume we have estimates @y, a; of a; and a, such that

[@; — a;] < A; (5.5.1)

for some known positive functions A;, ¢ = 1, 2. Further assume the control gain matrix G
is unknown but that we have an estimate G for it such that

G=(I+A)G (5.5.2)

with |A;;| < 6;; for 4, j = 1, 2 where §;; are known pbsitive functions. Also we assume
that G is nonsingular over the entire state space, and that G is invertible, continuously
dependent on the parametric uncertainty, and such that G = G in the absence of

parametric uncertainty.
Let 6;(t) and 65(t) be smooth functions of time that represent the desired

trajectories for the shoulder and elbow angles. Consider the two sliding surfaces o; = 0,
i =1, 2 with

o5 =0; +pb =0,— b, (5.5.3)

where ON, =0, — 0 are the two tracking errors, p;, fip are positive scalar design
parameters, and

0, = 9: - /1"1251; (5.5.49)
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Then the tracking problem can be translated into finding inputs [Ap; Ap,]” that verify the
individual sliding conditions

1d
5% < —mloil (5.5.5)

with 7; > 0 in the presence of parametric uncertainty.
Let the sliding mode control law be given by

Aps | _ »1 01 a; [kl sgn(o)
[Ape} — G ([91'2] [52 kzsgn(o_z) (5-5.6)
where k; and k, are pqsitive constants. Then since

o1 =81 — a3+ Ay (B — @) + Ar2(0,1 — @)
— Aqpgkysgn(oy) — (1+ Aqy)kisgn(oy)  (5.5.7a)

Gy = g — ag + Dg; (B9 — @) + Aga (02 — B2)
— A kysgn(oy) — (1 + Ag)kosgn(oz)  (5.5.7b)

the sliding conditions (5.5.5) are verified if

(1= 611)k; > Ay + 61110, — @y| + 612|001 — | — b1k (5.5.8a)

(1 — b22)ky > A + 831|050 — @1| + 622102 — @] — E1ky (5.5.8b)
and, in particular, if k; and k; are chosen such that

(1= 611)ky + b12ky = Ay + 8611101 — 1| + 612101 — ol +my (5.5.9a)

(1= 830)ka + 6a1ky = Ay + 83110p0 — @1 | + 62|00 — G| + 2 (5.5.9b)

The Frobenius-Perron Theorem [28] guarantees that equations (5.5.9a) and
(5.5.9b) have a unique nonnegative solution [k;, k2]. Therefore, the control law (5.5.6)
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with k;, k, defined by (5.5.9a) and (5.5.9b) satisfies the sliding conditions (5.5.5) in the
presence of parametric uncertainties bounded as in (5.5.1), (5.5.2).

The control law (5.5.6) is known to cause chattering due to the discontinuities
across the sliding surfaces. Chattering can cause excessive wear on the PM valves, and
therefore is undesirable. To reduce this, we introduce boundary layers in the vicinity of
the sliding surfaces. Inside the boundary layers, the control laws are linear and
continuous. Outside the boundary layers, the control laws have the form given in (5.5.6).
With boundary layers, the complete multi-input sliding mode control law for the arm is

given by
Ap, Al 91-1} _ l:al:| _ [klsat(al/rl)]
[Ape } =G ([91.2 62 k2sat(0'2/]_"2) . (5.5.10)
where
sat(y) = { sgn(y), LtLerwise (5.5.11)

and I'; and Ty are the boundary layer thicknesses, i.e. the boundary layers are defined by

Ly ={(61, 1) : [01(61, 01)| < T} (5:5.12a)

Ly = {(6, 85) : |02(63, 82)| < T3} (5.5.12b)

Thus, when the state trajectories are outside their respective boundary layers, the
trajectories approach and reach the boundary layers in finite times due to (5.5.7a) and
(5.5.7b) when k;, k, are chosen to satisfy (5.5.9a) and (5.5.9b).. Once inside the boundary
layers, the state trajectories 6; and 6, are governed by (5.5.3), i.e. taking the Laplace

transform of 6; (t) we have

1

P oi(s) (5.5.13)

0 (s) =

which, together with the fact that |o;| < T'; Vt > ¢, with ¢; finite, yields

54



I; '
lim s;xploi(t) —-8@)| <= (5.5.14)
0P >, ) :

i -

fori=1,2.

Therefore, we have that the sliding mode control law (5.5.10) guarantees that the
state trajectories reach their respective boundary layers in finite times whatever the initial
states, and inside the boundary layers constrains trajectories to stay inside them for all later

time and approach neighborhoods of 5; = 0 asymptotically as ¢ — co. Asymptotic
tracking of the shoulder and elbow angles to within guaranteed accuracy is therefore
obtained in spite of modeling errors which may be present in PM coefficients, masses,
distances, etc. Thus the desired spatial path is followed by the end effector within an error

bound.

5.6 Simulation Results

The planar arm of Figure 5.3 with opposing-pair PMs of the type described in
Section 5.2 actuating the shoulder and elbow joints is simulated using a 4th-order Runge-
Kutta algorithm with a step size of 0.01 seconds. Letl; =1l; =0.46 m,l; =l = 0.23
m, m; = my = 10 kg, 7, = 7.62 cm, and r, = 5.08 cm, n; = 6 and n, = 3. For these
simulations we assume all physical quantities of the arm, ie. masses, lengths, etc. are
exactly known, but that the PM coefficients, i.e. F, K, and B are not known with
precision. Assume all 12 shoulder PMs (6 pairs) are matched to each other, but not to the
elbow PMs. Similarly assume all 6 elbow PMs (3 pairs) are matched to each other, but
not to the shoulder PMs.

The sliding mode controller is designed according to (5.5.10) with @, and @, given
by (5.3.14) and G given by (5.3.15) using ideal values for all F, K, and B coefficients.
To investigate robustness of the sliding mode controller, we randomly choose three sets of
actual (nonideal) F', K, and B coefficients from a uniform distribution within £50% of
their nominal values. The coefficients used are listed in Table 5.1.

The coefficients listed in Table 5.1 are those that produced the greatest tracking
error (while maintaining a random selection), so that we could see how close to the
predicted error bounds (5.5.14) the actual tracking errors were. Other choices for
coefficients produced less tracking error, so are not reported. In the process of choosing
which sets of coefficients to use for the simulations, it was noticed that tracking error was
by far the most sensitive to variations in the coefficient, Fj. This is perhaps not surprising,
since from (5.2.1), (5.2.4) the PM contractile force F' is directly proportional this
coefficient, and F' has a more direct effect on the PM force than the other coefficients

(K(), Kl’ BO’ and Bl)
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Table 5.1 - PM coefficient sets used for the simulations. Si(E4) = shoulder (elbow) PM
coefficients for actual PM coefficient set <.

Coefficient Ideal S1 E1l S2 E2 S3 E3
Fy( x 10%) 1.79 1.53 2.58 | 0.984 2.34 1.69 2.40
F 1.39 0.763 1.67 1.49 0.812 1.99 0.722
Ky 5.71 7.17 7.70 6.86 8.25 5.52 6.75
K;(x 1072) 3.07 428 | 2.18 4.49 4.35 2.82 2.70
By; 1.01 0.794 | 0.965 1.26 1.11 1.36 1.35
Bj(x1073) | 6.91 5.19 4.02 8.57 5.21 7.08 6.93
Boa( x 1071 | 6.00 8.60 8.11 5.59 8.24 4.22 7.26
Bjg(x10™%) | —8.03] —5.07| —853| —9.11| — 814} —9.41 | —7.46

For all simulations, we use p; = 5.0 and I'; =1.0. From simulations with
parametric uncertainties within the £50% range, we find that A; =125 and A; = 15.0
satisfy inequalities (5.5.1). From (5.5.2) we also have A = [A;;] where

0.5,
|By] < 6= { 0,

i=]

i (5.6.1)

Using these values and the simulated functions 0,; — @, i=1,2, we find k; = 50,i =1,
9, satisfies (5.5.8), resulting in closed-loop stability and convergence of the trajectories to
the interior of the boundary layers and a guaranteed tracking precision of I';/p; = 0.2
radians for both joints. Also let 6,y = — 7/4, 03¢ = 7/2, Pops = Fote = 310.3kPa (45
psi), resulting in Py;; = 490.4kPa (71.1 psi) and Py, = 310.5 kPa (45 psi), satisfying
(5.4.3) and (5.4.8). With these nominal pressures and with n;, n. as above, all PM
pressures remain in the allowable range 206.844 < P < 620.532 kPa (30 < P <90 psi)
for all control tasks in this section.

We investigate controller performance for three tracking tasks for the end effector
in z-y space: a sinusoidal spline, a vertical line, and a circle. '

- Sinusoidal spline
The desired spatial path is given by:

24(t) = 0.1524 + 0.1219¢ m (5.6.2a)
ya(t) = 0.39624 + 0.24384sin(0.47t — /2) m (5.6.2b)

where 0 < t < 5 seconds.




The spatial tracking performance for the true plant with PM coefficients in set 1 is
shown in Figure 5.4. Tracking performance when PMs are described by coefficient sets 2
and 3 are similar to Figure 5.4. It will be noted that there is some spatial tracking error,
which is to be expected due to the parameter errors. An initial transient can also be seen,
due to the initial pressure adjustment that is necessary to produce accurate tracking.
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Figure 5.4 - Spatial tracking behavior, PMs in coefficient set 1, m; = my = 10 kg.

Figure 5.5 shows the control efforts Aps,v Ap, that produced the tracking
performance in Figure 5.4. It will be noted that with the nominal pressures Pots, Fobs,
Py, and Py, given above, the PM input pressures remain within the allowable range for

these PMs.

The elbow angle tracking error (which is larger than the shoulder angle




tracking error in this case) for coefficient sets 1, 2, and 3 is shown in Figure 5.6. It is seen
that for all systems the tracking error is within predicted bounds, i.e.

im sup|6;(t) — 6;(t)| < % = 0.2 radians (5.6.3)
X > to i

to —
0 i

This tracking error is obtained after the initial transients have died away.

200

150

100

[4]]
o

Input pressure (kPa)
b

:
)
%

100}k

-150

=200, 05 1 15 2 25 3 35 4 45 5
Time (seconds)

Figure 5.5 - Control effort producing tracking performance of Figure 5.4.
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Figure 5.6 - Elbow angle tracking errors for 3 different plants (PM coefficient sets 1, 2,
and 3), sinusoidal spline reference trajectory, m; = mg = 10 kg.

Vertical line
The desired spatial path for the vertical line is given by:

z4(t) = 0.6096 m | (5.6.4a)
ya(t) = 0.39624 + 0.24384sin(0.47¢t — /2) m  (5.6.4b)

The spatial tracking performance for PMs with coefficients in set 3 is shown in Figure 5.7.
Tracking performance for other sets is similar. The corresponding control effort is shown
in Figure 5.8. The elbow angle tracking error (which is larger than the shoulder angle
tracking error in this case) for PMs with coefficients in sets 1, 2, and 3 is shown in Figure
5.9. It is seen that for all systems the tracking error is within predicted bounds and PM
pressures remain within the allowable range.
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Figure 5.9 - Elbow angle tracking errors for 3 different plants (PM coefficient sets 1, 2,
and 3), vertical line reference trajectory, m; = mq = 10 kg.

Circle
The desired spatial path for the circle is given by:

z4(t) = 0.36576 + 0.3048sin(0.4t — 0.7754)) m  (5.6.59)
ya(t) = 0.36576 + 0.3048cos(0.47t + 2.3462) m (5.6.5b)

The spatial tracking performance for PMs with coefficients in set 1 is shown in Figure
5.10. The corresponding control effort is shown in Figure 5.11. The elbow angle tracking
error (which is larger than the shoulder angle tracking error in this case) for PMs with
coefficients in sets 1, 2, and 3 is shown in Figure 5.12. It is seen that for all systems the
tracking error is within predicted bounds and PM pressures remain within the allowable
range.
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Figure 5.11 - Control effort producing tracking performance of Figure 5.10.
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Figure 5.12 - Elbow angle tracking errors for 3 different plants (PM coefficient sets 1, 2,
and 3), circle reference trajectory, m; = mo = 10 kg.

Sinusoidal spline, doubled mass
In practical applications, it may be expected that the mass actuated by the arm will

change. To investigate the robustness of the sliding controller to changing masses, we
increased the arm masses m;, mo each by a factor of 2 to 20 kg and used the same
controller as above to track the sinusoidal spline reference trajectory (5.6.2). Both the
shoulder and elbow angle tracking errors are again within predicted bounds, indicating
that the sliding mode controller is robust to changes in mass.

Figure 5.13 shows the control effort produced by the sliding controller for this
plant. It is seen that with the above nominal pressures, the PM pressures remain within

the allowable range for the duration of the control process.
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Figure 5.13 - Control effort, sinusoidal spline reference trajectory, coefficients in set 1,
my; =Mmy = 20 kg

5.7 Discussion
A two-input sliding mode controller has been designed for a 2 DOF planar arm

assembly with highly nonlinear pneumatic muscle actuators in opposing pair configurations
actuating the shoulder and elbow joints. Designation of these joints as shoulder and elbow
is arbitrary and nominal; however, it is convenient for considering applications in which
pneumatic muscle actuated devices could provide joint loading to generate or assist
extremity motion, or maintain extension of muscles with contractures.

The control input for the planar assembly enters the process through nonlinear
spring and friction coefficients and a nonlinear contractile force term that are contained
within a mathematical model for the pneumatic muscle actuators. A dynamic model for
the arm with four PM actuators is derived, and this is put in a form suitable for sliding
mode control. A relationship between static internal pressures is derived to give stable
arm behavior in the absence of any control signal. '

Simulations of closed-loop tracking were performed with sinusoidal spline, vertical
line, and circle paths desired for the assembly end effector. These paths are generic in
nature; however, they can serve well as potential building blocks for an ample variety of
more task-oriented end effector paths. Data from the motion biomechanics literature ([29],
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[30]), as well as dedicated biomechanical experimentation, could be used to identify actual
end effector paths for practical activities such as feeding and grooming.

Closed-loop tracking performance, resulting from simulations, is in line with
theoretically predicted behavior. Closed-loop tracking with several arm models with
coefficients within a +50% range are shown to agree with theoretical results. The
controller is shown to be robust for a 100% change in arm masses. The effects of heating
are also presented. It is seen that some reasonable amount of heating may be tolerated.

- Thus, sliding mode control is shown to be a very promising method for control of systems

containing pneumatic muscle actuators, including devices that could potentially benefit
persons with neuromuscular or musculoskeletal pathologies.
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6 Neuro-fuzzy Modeling of PM

6.1 Introduction
Recently, neural networks, fuzzy systems and combinations of these have obtamed-

great success in modeling nonlinear dynamics. Of them, recurrent neuro-fuzzy systems
are most effective and efficient ([31]-[36]). They combine the dynamic mapping
capability of common recurrent neural networks with the human-like decision-making
capability of fuzzy systems. Some theoretical results ([38], [39]) also prove their
potential for approximating a large class of dynamics to an arbitrary degree of accuracy.
Therefore, we implement this technique to develop a more accurate model for the
pneumatic muscle by using soft-computing techniques, i.e. fuzzy logic combined with
neural networks, based on recorded data.

6.2 Recurrent Neuro-Fuzzy Modeling for Pneumatic Muscle

According to studies of Reynolds et al. [17], the dynamics of a pneumatic muscle
system can be described by a second-order nonlinear differential equation. Therefore, in
order to model the PM with a neuro-fuzzy system, we choose a model of the form:

(k) = f(k-1), (k- 2), x(k 1), x(k - 2))+e(k) (6.2.1)

where k is the time step, y is the estimated length of the muscle and x is the voltage input

to the valve. The above equation can be approximated by a recurrent neuro-fuzzy
inference system as shown in Fig. 6.1.
In the system of Figure 6.1, there are 81 Sugeno-type rules w1th the following

expression used in the rule base:

RULEi i=1,2,---,81:

Hi1 M1 H31 Hal
IF )A)(k - 1) is Hi2 AND j’(k“- 2) is y25%) AND .X'(k - 1) is M32 AND X(k - 2) is JI7%)
i3 Ha3 M33 H43
THEN y =C;
6.2.2)

where 4 4, ( j=1,2,3,4,m=1,2, 3) are input membership‘ functions and C;
(i =1,...81) represents 81 local models in fuzzy partitions. In (6.2.2), AND means the

fuzzy “AND” operator, or T-norm. In this chapter, the product T-norm is adopted for
“AND.”
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Fig. 6.1 - Recurrent neuro-fuzzy inference system

6.3 Topologies

The recurrent neuro-fuzzy inference system is six-layered. Layer A is an input
layer, and neurons represent fuzzy variables found in the fuzzy inference machine. They
are volts applied to the air-inlet valve and length of muscle estimate in the past two time
steps. Layer B is a term layer. Nodes in this layer are called term nodes and correspond
to linguistic values (small, medium and large) of the input variables. The membership
functions u are described below. Layer C is a rule layer. Nodes with label [ represent

fuzzy reasoning rules collected in the rule base. Note that label [T means that the product -
“AND” operator is employed to calculate the degree of match for parts of the premise,
which evaluates the degree of activation of rules. Layer D is a defuzzification layer. Its
first neuron calculates the reciprocal of sum of degrees of match of rules, and connection
weights on links between other neurons. The other neurons in layer D define local
models C; appearing in the consequents of rules. The neuron in layer E is an aggregation
neuron, which aggregates the weighted local models. Layer F is the output layer. The
output of the neuron in this layer represents the estimated length of muscle in the current
instant.

In all, five different neurons are defined to support the network. These are
described below, where v is the neuron's input and z is its output. ’
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A unity neuron I with input-output relationship defined by

z=v (6.3.1)

A sum neuron X in layer E implements a sum operation, which is used to
aggregate the weighted local models:

z= ZC,.V,- (6.3.2)
A product neuron with label IT is used to implement a product “AND” operation

z=]]wwv - (6.3.3)

An inverse neuron with label yz in layer D implements the reciprocal operation in
the defuzzification phase:

z= f( w,-v,-)=—Z—1— (634

Wy,

A term neuron with label u, (1 =1,2,3,4,m=1,2, 3) in layer B implements a
membership function defined below:

[ v—a;
T ‘;m‘ Ajm Vb,
J Jm
Cj -V
/ljm(V)=<————B—— bjm SVSij (6.35) ’
Cjm —Ojm
0 otherwise

6.4 Structure Learning via VISIT

‘At the beginning, the RNFIS in Figure 6.1 is empty without any rules or fuzzy sets.

The structure of the RNFIS refers to the number of rules, membership functions, and
their properties (i.e. centers and spreads). A simple self-organizing algorithm known as
the Variable Input Spread Inference Training algorithm (VISIT) [37], developed by the PI
and coworkers, is used to perceive structure features from a sequence of training data.
VISIT is a variation of the well-known Modified Learning From Examples (MLFE)
algorithm for identification of fuzzy systems from data. In VISIT, the membership
functions can be any shape in general, as long as they are convex. In this chapter, we will
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use asymmetrical triangular input membership functions and singleton output
membership functions. The fuzzy system determined by VISIT is then used as an initial
condition for further tuning via backpropagation. This is done to improve BP’s chances
of converging to the global minimum of the error criterion rather than a local minimum,
thus producing a more accurate model of the process.

To begin the VISIT algorithm, training constants o, 4, &, and w are specified by

the user. The constant oy is the initial value for the spread of the first membership

function on each universe. The constant A determines when a new membership function
is created on a universe of discourse. If a new training point is within a A-cut of an
existing membership function on a universe, a new membership function is not created on
that universe. The constant ¢ is the maximum identification error tolerated before a new

rule and new memberships are added to the fuzzy system. Finally, w determines the
amount of overlap between adjacent memberships on a universe. We now give the VISIT

algorithm.

VISIT Algorithm for Function Approximation
1. Seti=1. Get the first training pair #p' = (1> X5 eevs X y)l. On each input

universe of discourse form a fuzzy set A} characterized by a membership function

Hy (x}) with center at m} = x}- and spread o(. On the output universe of
J

discourse form a fuzzy set B! characterized by a singleton membership function

with support yl.
2.  Addtherule
If x is A11 and x; is A% and ... and x,, is A,l, then y is Bl.

3.  Ifthere are no more training pairs, the training cycle is completed. Otherwise,
increment i and get the next training pair 2’ = (x;, x5, ..., X,,, ¥ -

4, If ’ f (tpi)~ yi ! <& where f° (tpi) denotes the crisp output of the existing fuziy .

system evaluated at the new training pair #p’, discard fp’ and go to 3.

5. On the jth input universe, evaluate all membership functions at x;'- . Call the fuzzy

Vi

set whose membership function is maximum A;pax If xj- gl —cut( ¥ ), form a

new fuzzy set A;-'ew on the jth universe characterized by a membership function
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with center m;-'ew = xj- and left and right spreads 0']1-‘ and af asin step 6 below.

On the output universe form a new fuzzy set B"™" characterized by a singleton

membership function with support y'.

On each input universe on which a new membership function was added in 5, the
spreads of each side of the new membership function and its nearest neighbors on
the left and right are re-calculated as follows. The right spread of the new
‘membership function and the left spread of the nearest right neighbor are re-
calculated as

new nRn

m;  —m; (6.4.1)

The left spread of the new membership function and the right spread of the nearest
left neighbor are re-calculated as

new nln

me” —m" - (642)

where m"™®" denotes the nearest existing center to the right of m7*" and m;'L"

denotes the nearest existing center to the left of m7°" .

Add the rule

If x| is 4, and x, is 4, and ... and x,, is 4, thenyis B™"

If there is no other rule in the rule base that is inconsistent (i.e. same premise,
different consequent) with this rule, where the fuzzy sets in the premise are the
ones maximized by the corresponding inputs

If there is another rule (rule p generated from tpk ) in the rule base that is
inconsistent with the rule formed in 7 (rule g generated from the present training

pair tpl ), define fuzzy system £, (f,) to be the fuzzy system with rule p (¢)

included in the rule base but rule g (p) omitted from the rule base. Retain rule p
and omit rule g if

1, * )54+ |1, o' )—y’|<|f,,(z:o" b)Y 649
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Otherwise, include rule g and omit rule p.
9. Goto3.

Comment:
It is possible that the rule to be added in step 7 has the same premise but a different

consequent than an existing rule, i.e. the newly created rule is inconsistent with an
existing rule. In such a case, we need to determine which rule provides a better match to
the data so we know which rule to retain in the rule base and which rule to omit. To do
this, we create two fuzzy systems, each with only one of the inconsistent rules retained,
but with the other inconsistent rule omitted. In (6.4.3), a comparison of the two fuzzy
systems is made on both training pairs that generated the two inconsistent rules. The
fuzzy system having less total identification error for both training pairs is retained and
the other omitted. In this way, we determine which of the two inconsistent rules does a
better job of describing the data and retain it in the rule base, omitting the other.

6.5 Backpropagation Training Algorithm

For fuzzy systems, training algorithms provide a means for refining inference rules
in the form of (6.2.2). A general technique in most algorithms is that input and output
data recorded from the actual process are used in the calculation of the current output
estimate of the fuzzy system. Therefore, these methods statically refine fuzzy rules, and
therefore are more suitable to excute static tasks such as function mapping and pattern
classification rather than modeling of dynamics. In contrast to these static training
‘techniques, the recurrent neuro-fuzzy inference system implies a kind of dynamic
refinement for fuzzy inference rules, where past outputs of the fuzzy sytem itself and
recorded input data from the process are used to calculate the current output esstimate of
the fuzzy system due to the existence of some global feedback connections. As a result,
rules are tuned in dynamic ways, and the resulting systems can better approximate the
dynamics of a wide class of nonlinear systems with any degree of accuracy ([38], [39]).

Given N recorded input-output pairs from the process {x(n), y(n)}, n=1,..., N, we
can train recurrent neuro-fuzzy systems by using the well-known error ba_ckpropagation
(BP) training algorithm. To control the training process, the mean square error (MSE) is
chosen as the performance index for evaluation of the effectiveness of the fuzzy system.
If y(n) is the nth recorded output (length) of the pneumatlc muscle and y(n) be the

model output, the MSE criterion is written as:

MSE = ( )Ze (n) (6.5.1)

n=1
where the training error e(n) is defined as

e(n)= y(n)- 3(n) (6.5.2)
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The weights W(f) of the neural network, which in this case consist of the
membership function parameters, are adjusted by the well-known BP training algorithm,
which is written as follows:

W(t+1) =W )+ az;; ) AW ()
o (6.5.3)
=W (t)—2ne(n) -?g—%)- + AW (1)

where W =[a1,b1,¢115 . 013,513, €13, A43, D43, €43, G50+, Cyy] s a vector of tuning
parameters in the recurrent neuro-fuzzy inference system, the integer ¢ denotes the step
during the training process, coefficients 77 and y are learning parameters that control the

training process, and AW(t)=W(t)-W(t—1). Larger 5 will accelerate the training
process but may introduce oscillations. Larger y will greatly smooth but slow the
training. The parametersC,, a;, , b, , ¢, are updated according to the following rules

C,(0+1) = C,(0) - 27e(m) > F(n )+ JAC, (£) (6.5.4)
@ +1) = () qu(n)ay() Okim s v ®) (6.5.5)
Him Oa A jm
ay(n) Ojm
bin (041~ ()~ 206() 222101 0 (6.5.6)

€ jm (t +1) =y, (£) — 217e(n) Zy(”) Hin. — 4 yAc;, (1) (6.5.7)

/‘jm aij

The quantities () and 6yé m) are calculated by the following two formulas:

ﬂjm i

B(n) _ 3(n) o, onet,

oc; ao: .anet: ac
3 anet: . dol ‘Gneté
- 60% anet§ oC;

6net§

e

' =oi oy

(6.5.8)
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PH(n) _P(n) 00, onerg
ou; im ao: anet ] a,Ujm
1 1

=01 605 anets +0;. 6041 _Onety
6net5 Ot jm Onety Optjm (6.5.9)
1 6net5 1 1 aneti '
= 04 . ""‘05 . 12 °

a/ujm _(net4) OH, Jm

1 003 do}
=04 (C;- )—03 )
; l O jm ( et4)2 Z Ot jm

where of, is the output of the ith neuron in the Ath layer and net,{ is the input of the jth
neuron in the Ath layer. This can be calculated by

H w;v;, for product neurons

t
ne Z w;v, otherwise (6.5.10)
The sensitivity of membership function 4, to changesin aj, is derived as
v-b,
Wjm | ——L—, aj, <v<b;
oa;, - (bjm —4qjm )2 o (6.5.11)
J 0, otherwise

™ does not make sense. In all calculations

0
Note that when aj, =v, the sensitivity

involving , we define
jm
-1 . .
ou; — Ajp =V
A jm Abm-am " (6.5.12)
6aj,,, -
jm=v O, ajm =V

Similarly, the sensitivity of membership function x;, to changes in b;, and c;, is

derived as
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a., —v -
G . sveb,
(bjm—ajm)
Ol jm Cim=—V ’
%, = Py 72 s bim <v<cy, (6.5.13)
jm Jjm
0, _ otherwise
with
1 o
Ol jm Cim—bjm om =Y
/ =3/ _1’ (6.5.14)
abjm b, =v > bm=v"
Jm bjm ajm !
and.
bjm—v
6/11,,, A= b_]m <v<c;
- ’ Jm
e = 1Cm im)” (6.5.15)
Jm 0, otherwise
with
R,
Ot jm (1)’ Cm =Y
Y = - 6.5.16
acjm c. =y C:; —-b ? ij—V ( )
jm Jm Jm

6.6 Dynamic Modeling of PM from Test Data

In the following, we model the dynamics of a real pneumatic muscle hanging
vertically actuating a mass of approxnnately 20kg, as in Figure 2.2.. We collected data
from the Pneumatic Muscle Test Station in the Human Effectiveness Lab at Wright-
Patterson Air Force Base. All algorithms in this chapter are developed in Matlab 5.3, and
simulations are executed on a PC with 933MHz PIII CPU.

A sample of the normalized recorded input-output data is plotted in Figure 6.2. In
the following, we model the pneumatic muscle using the recurrent neuro-fuzzy inference
system presented in Section 6.2 and initiated via VISIT.

We collected several sets of input-output data from the PM and used these for
training and test data for modeling. Using these data, a RNFIS model as in Figure 6.1
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was developed. In the structure learning phase, we used VISIT with £=0.1, w=10.85,
A =027, and oy =1.17. These parameters were chosen to yield a fuzzy system with a

relatively small number of rules and fuzzy sets on each universe while giving relatively

‘small identification error. This provided a good initial system structure to be tuned

further via BP.
In the parameter learning phase, we use the BP algorithm of Section 6.5 for tuning

‘model parameters (i.e. centers and spreads of the model membership functions identified

by VISIT). After approximately 20,000 iterations, the BP training was ended at a mean
square error of MSE=0.0011, where

K .
MSE-—:-IIEZ()‘z(k)— IY(3)a (6.6.1)
k=1 A

In (6.6.1), (k) is the output of the identified RNFIS model, y(k) is the experimentally

measured PM length (see Figure 6.2(a)), and X is the number of input-output pairs used.
This tuning process yielded the following 32 rules together with the input membership

functions plotted in Figure 6.3.
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Figure 6.2 — Normalized training data used for neuro-fuzzy modeling: (a) muscle length

(output), (b) valve volts (input).
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Rule-base for RNFIS Model of PM

1.

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

If y(k-1) is mf); and y(k-2) is mfy; and x(k-2) is mf;; and x(k-1) is mfy; then

y(k) =1.900

If y(k-1) is mf}; and y(k-2) is mf>; and x(k-2) is mfs; and x(£-1) is mfy; then

wk)=2.154

If y(k-1) is mf}; and y(k-2) is mf;; and x(k-2) is mf3; and x(k-1) is mfy, then

(k) = 1.805

If y(k-1) is mf); and y(k-2) is mf;; and x(k-2) is mfs, and x(k—l) is mfy, then

y(k) = 0.160

If y(k-1) is mf; and y(k-2) is mfy; and x(k-2) is mfs; and x(k-1) is mfy, then

(k) =2.481

If y(k-1) is mfy, and y(k-2) is mfy; and x(k-2) is mfs; and x(k-1) is mfy; then

wk) =2.478

If y(k-1) is mfj, and y(k-2) is mfy; and x(k-2) is mfs; and x(k-1) is mfy; then

y(k) = 0.668

If y(k-1) is mf}; and y(k-2) is mfy; and x(k-2) is mfs; and x(k-1) is mfy; then

(k) =0.325

If y(k-1) is mf}, and y(k-2) is mf;; and x(k-2) is mf3; and x(k-1) is mfy; then

y(k) =1.001

If y(k-1) is mfj, and y(k-2) is mfy; and x(k-2) is mfs; and x(k-1) is mfy; then
w(k) =0.425

If y(k-1) is mf}, and y(k-2) is mf, and x(k-2) is mf3; and x(k-1) is mfy; then

y(k)=2.179

If y(k-1) is mfj, and y(k-2) is mfy, and x(k-2) is mf3; and x(k-1) is mfy; then

w(k)=1.163

If y(k-1) is mf}, and y(k-2) is mf;; and x(k-2) is mfs; and x(k-1) is mfy, then

y(k) = 0.461

If y(k-1) is mf}, and y(k-2) is mfy; and x(k-2) is mf33 and x(&-1) is mfy; then

y(k) =0.876

If y(k-1) is mfi; and y(k-2) is mfy; and x(k-2) is mfs; and x(k-1) is mfy; then

y(k) = 0.573

If y(k-1) is mf}; and y(k-2) is mfy; and x(k-2) is mfs; and x(k-1) is mfy then

y(k) = 0.829

If y(k-1) is mfi3 and y(k-2) is mfy; and x(k-2) is mfs; and x(k-1) is mfy; then

w(k) =3.594

If y(k-1) is mf}; and y(k-2) is mfy; and x(£-2) is mfs; and x(4-1) is mfy4 then

y(k) =0.611

If y(k-1) is mf}3 and y(k-2) is mfy, and x(k-2) is mf33 and x(k-1) is mfy, then

wk)=1.071

If y(k-1) is mfy; and y(k-2) is mfy; and x(k-2) is mf3; and x(k-1) is mfy; then

wk)=2.271

If y(k-1) is mf}, and y(k-2) is mfy; and x(k-2) is mfs, and x(k-1) is mfy4 then

(k) =1.154
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22.
23.
24.
25.
26.
27.
28.
29.
30.
31.

32.

If y(k-1) is mf}; and y(k-2) is mfy; and x(k-2) is mfs; and x(k-1) is mfy; then

y(k) =1.225

If y(k-1) is mf3 and y(k-2) is mfy; and x(k-2) is mfs; and x(k-1) is mfy, then

y(k) =1.169 '

If y(k-1) is mfi, and y(k-2) is mfy3 and x(k-2) is mfs; and x(k-1) is mfy3 then

(k) =0.534 '

If y(k-1) is mfi3 and y(k-2) is mf; and x(k-2) is mfs; and x(k-1) is mfy, then

y(k) = 0.685

If y(k-1) is mf}; and y(k-2) is mfy; and x(k-2) is mfs; and x(k-1) is mfs; then

y(k) = 1.841

If y(k-1) is mfy3 and y(k-2) is mfy3 and x(k-2) is mfs; and x(k-1) is mfy; then

(k) = 0.587

If y(k-1) is mf}3 and y(k-2) is mfy3 and x(k-2) is mf33 and x(k-1) is mfy, then

y(k) = 0.439

If y(k-1) is mfi3 and y(k-2) is mfz3 and x(k-2) is mfs4 and x(k-1) is mfy; then

y(k) = 0.607

If y(k-1) is mfi3 and y(k-2) is mfy3 and x(k-2) is mfs; and x(k-1) is mfyy then

y(k) = 0.094

If y(k-1) is mfi3 and y(k-2) is mfy3 and x(4-2) is mf33 and x(k-1) is mfy, then
y(k) =0.893 ,

If y(k-1) is mf}3 and y(k-2) is mf3 and x(k-2) is mf33 and x(k-l) is mfy; then

y(k) =2.043

0 1 2 1
x(k-1) x(k-2)

~ Figure 6.3 — Input membership functions for 32-rule fuzzy model of PM |
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The model output is compared with that of the true PM in Figure 6.4. The
sampling time in Figure 6 is % 4 second, yielding K ~3600. Obviously from Figure

6.4, the model closely describes the PM dynamics.
To further verify the above model, we used another set of recorded data from the

same pneumatic muscle to test the model. The results are plotted in Figure 6.5. From
Fig.6.5a, we see that the PM length smoothly changed in this data set, and the above
obtained model closely describes this behavior with small errors (MSE = 0.01622).
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Figure 6.4 - Neuro-fuzzy dynamic modeling for the pneumatic muscle: (a) output of the

fuzzy model, (b) modeling error
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7 Evolutionary Design of a Fuzzy Classifier from Data

This chapter presents results that are tangential to the main topic of the project, i.e. PM
control. However, since the results grew directly out of our research on this project, we

present them here.

7.1 Introduction :
Pattern classification refers to the problem of partitioning a feature space into
several regions and categorizing objects into classes defined on these regions. The

problem of classifier design is to find an optimal mapping f from the feature space R"
into the decision space C, i.e. f:R"” —C. There are many ways to construct classifiers,

such as statistical models [40], neural networks [41], and fuzzy logic systems [42].

Fuzzy logic has been applied in several sophisticated classification systems [43]
due to its powerful capabilities of handling uncertainty and vagueness. Fuzzy logic
brings into classification systems the existence of overlapping classes and a soft decision
mechanism. A pattern therefore can belong to several classes with different degrees of
membership. Moreover, fuzzy classifiers consist of a set of fuzzy if-then rules, which
provide insight into the classifier structure and improve interpretability [44].

Fuzzy classifiers such as those above generally lead to performance that is similar
to alternative techniques such as those based on neural networks or statistics. Studies
have shown that neural networks and fuzzy systems are equivalent and convertible ([45]-
[47]). The advantage of fuzzy classifiers lies in their interpretable rule-base structure.
The fuzzy classification rules are represented in linguistic forms that are easily
interpreted and examined by users. The interpretability of results is related to the number
of fuzzy rules. Fuzzy systems containing few fuzzy rules are always more interpretable
than those with many fuzzy rules. Moreover, a small rule base generally improves
performance by eliminating over-fitting, boosting generalization and enhancing
robustness.

In this chapter, a new evolutionary approach is proposed for deriving a compact
fuzzy classification system directly from data without any a priori knowledge of the
distribution of the data. At the beginning, the fuzzy classifier is empty with no rules in
the rule base and no membership functions assigned to fuzzy variables. Then, rules and
membership functions are automatically created and optimized in an evolutionary

process.

7.2 Fuzzy Classifier Architecture
The antecedent of a typical rule in a fuzzy classifier defines a decision region in the
n-dimensional feature space; the rule consequent is a class label from the finite set

{Cl C, ... Cy } A typical fuzzy classification rule is
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Rulel:If x, is Al and x isAI and---and x isAI,thenyisC
| 1 2 2 n n m
where I=1,..., L, L is the number of rules, me1,..., M, M is the number of classes, n is

the number of features, and Aj. (j=1,2, ..., n) is a fuzzy set associated with the feature

variable X Let Aj. be characterized by the membership function . (xj). The
J

membership function pA, can be triangular, Gaussian, or any other shape. In this
! )
chapter, we consider asymmetric Gaussian membership functions, defined as:

( \2
x,—ml,
g
2 L
7. .
e O / s xj<mj,
X, [=4 2.
J x,—-m,
g
2 R
%) ,
e / , X.2m,
L J

where mj. denotes the membership function center and o-f , and o-Jl.' ; Tepresent the right

and left spreads. If x, = [xl Xy e xnj is a given feature vector, then using product for

premise conjunction yields the following firing strength ofrule R:

I, ~
H (xk)='uA" (xl)‘uA; (xz)"'/‘A'I' (xn) (7.2.2)

The output of the fuzzy classifier is determined by the rule with the largest firing
strength for a given feature vector. That is, if for pattern % the Jth rule has the largest

firing strength, %, will be categorized into the class in the consequent of that rule. The

classification error for pattern J“rk is calculated as

0 if £, is correctly classified
e = (7.2.3)

|1 if %, is incorrectly classified
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7.3 Extracting Fuzzy Rules via the VISIT Algorithm

The basic idea in many fuzzy learning systems is to separate the data into partitions
by clustering techniques, to define the appropriate behavior on each partition, and then to
tune the behaviors and/or the areas of partitions via such optimization techniques as the
Recursive Least Squares (RLS), the Levenberg-Marquardt (LM), and evolutionary
algorithms. The most straightforward and original methods used in constructing fuzzy
systems from data are the Learning From Examples algorithm (LFE) [48] and the
Modified Learning From Examples algorithm (MLFE) [49]. The Variable Input Spread
Inference Training algorithm (VISIT) [37] is similar to LFE and MLFE and is most
similar to MLFE. The basic idea of VISIT is that all adjacent membership functions ona -
given universe of discourse cross at the same level. VISIT shows some interesting
features compared to its peers.

The LFE algorithm relies on a given set of input membership functions that may not
adequately cover the universe of discourse or accurately describe the nature of the data
clustering. If the membership functions do not adequately cover the universe of
discourse, the classifier will not converge to an acceptable system and adequate
performance will not be achievable. The rule base can grow unmanageably and
unnecessarily large when the width of the chosen membership functions is significantly
smaller than the relevant cluster size of the data.

The MLFE algorithm chooses its membership function widths as a function of
learning constants and distance to the closest existing membership function on the current
universe of discourse. - The training can be very sensitive with respect to the learning
constants. But the symmetrical nature of the membership functions precludes prudent
choice of membership function widths on at least one side of each membership function.
Each new membership function tends to decrease in width relative to earlier created
membership functions. As a consequence, membership function widths can differ from
each other significantly. With decreasing membership function widths, a rule explosion
similar to that of LFE with narrowly specified membership functions could be realized.

The VISIT algorithm addresses the above problems by prudently choosing and
actively adjusting the widths of asymmetrical membership functions. For asymmetrical
triangular and several other membership function shapes, by choosing appropriate design

_parameters, these membership functions can form fuzzy partitions of unity. Because the
membership function widths are created as a function of the training data, the input
membership explosion experienced by LFE when cluster size exceeds membership width
is significantly reduced or eliminated completely. VISIT adjusts membership function
widths on each side of the membership function, based on the distance to the closest
membership function on either side of the new membership function. At the same time,
widths of existing nearest neighbor memberships are recalculated to account for the
newly added membership function. A result of active adjustment of existing widths is
that the membership function widths shrink at a much lower rate, one that is appropriate
for a given data set. The membership widths differ from each other only as indicated by
the nature of the data set, rather than as a function of the training algorithm.

Before starting VISIT, we first choose a vector of initial spreads
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Z=lal o

5 an] for the first membership functions created, a vector

A=[a] a, ... a, J of alpha-cut values, and a vector W=lw1 Wy ... wnj of

parameters determining the degree of overlap between adjacent membership functions on
each universe. We now give the VISIT algorithm for pattern classification. :

VISIT Algorithm [37]

1.

Set i =1. Get the first training pair tp] = (X Xyseees X5 y)] where y1 is the class of
data pair 1 represented by a real number. On each input universe of discourse form
a fuzzy set A;. characterized by a symmetrical Gaussian membership function

i (x;) with center at m =x} and spread ;- On the output universe of

discourse form a fuzzy set B! characterized by a singleton membership function

with support .
Add the rule

Ifxl is All and X, is A; and --- and x is A:' thenyis B,

If there are no more training pairs, the training cycle is completed. Otherwise,
increment i and get the next training pair 2" =(x, x,,..., ¥ , ).

Evaluate ' with the current classifier. If classification is correct, go to step 3.
Otherwise, go to step 5. '
On the jth input universe j=1,...,n, evaluate all membership functions at x;. . Call

Amax

the fuzzy set whose membership function is maximum and its a;-cut set

a, -—cut(A;f'ax) . If xj. ¢a; —cut(A}"ax), form a new fuzzy set A;.'ew on the jth
universe characterized by a membership function with center m;_'ew =x; and left

and right spreads ajI.‘ and af as in step 6 below. On the output universe, if the

pattern tpi belongs to a new class, add a new fuzzy set B’ characterized by a

singleton membership function with support y'. Otherwise, the class B’ already

exists from previous data.
On each input universe on which a new membership function was added in step 5,
the spread of each side of the new membership function is initialized as o

However, if there exist neighboring memberships on the left and/or right of the new
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one, the spread of the corresponding side of the new membership function and its

nearest neighbors on the left and/or right are re-calculated as follows. The right

. spread of the new membership function and the left spread of the nearest right
neighbor are re-calculated as

mr?ew _ mr'an
J J

R 1
o, =—
w

f = (7.3.1)
J

The left spread of the new membership function and the right spread of the nearest
left neighbor are re-calculated as

new nln
—_—lm' —m

! (7.3.2)

where m"® denotes the nearest existing center to the right of m;.’ew and m;.‘L"

denotes the nearest existing center to the left of m;.'e”'

If a new membership function was formed in step 6, consider the following
candidate rule where the fuzzy sets in the premise are the ones maximized by the
corresponding inputs:

If x is 4™ and x, is 47 and - and x_is 47" thenyis B’

If there is no rule in the rule base that is inconsistent (i.e. same premise, different
consequent) with this rule, add the above rule in the rule base. If there exists an
inconsistent rule, discard #' and go to step 3.

If there is another training pattern, go to step 3. Otherwise, the tralmng process
ends.

Comments

Note that the above VISIT algorithm is somewhat different from the original one in

[37]. In [37], the authors assumed that all universes of discourse were identical, hence
scalar values of w, a, and ¢ were chosen to begin the algorithm. However, in many real
systems, different features often work in different universes of discourse, so we apply
three vector parameters W, A, and X for the VISIT algorithm. Choosing different
values of W, A, and X results in different fuzzy systems from the same data set. The
main problem in finding a good VISIT classifier amounts to finding good values of the
parameters W, A, and Z. In the original VISIT, these parameters were chosen by trial

and error.

The vector parameter W determines the degree of overlap between two neighboring
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membership functions. Large w; results in small overlaps in the jth input universe of

discourse. It can be shown that two neighboring membership functions always overlap at

fy
e ’ /® when asymmetric Gaussian membership functions are used. Therefore, the
resulting fuzzy system will meet the so-called e-completeness condition, i.e., there always
exists at least one rule with firing strength of at least € for any pattern in the operative
region. It can be proved that the firing strength of any fuzzy rule generated by VISIT will

n 2
-w? /8
be no less than He v/ .
i=1
Parameters A determine when a new rule is added to the classifier, and X
determines the initial spreads of the first membership functions. Larger a; and smaller

o; tend to increase the number of membership functions for the jth input, while smaller
a. and larger o, tend to decrease the number of membership functions. -In some
situations, if o; is large enough and a, is small enough, a membership function will be

generated only for the jth input, which implies feature reduction because the same
membership function occurs in all rules.

2

-w" /8
When a;<e J / , a new membership function is formed only if the new feature
amount falls outside the a;-cut. We can estimate the distance between two neighboring

membership functions as:

distance > o; ’— 21n a; (7.3.3)

CIf m denotes the center of the first membership function for the jth input, we can

derive other membership function centers recursively from the above equation.

rnj’1 =miin (x; >m],’0+0'j ’—21]’]0].) (7.3.4)
m = miin (x; > rr'?j,k_1 +0; /—2111 ajJ (7.3.5)

for membership function centers to the right of 0 and

= i ~o. [-
mj’_l—m?x(xj<mj,0 o; 21naj) (7.3.6)
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— i _ — '
m —m?x [xj <M 7% ’ 21naj) (7.3.7)

for membership function centers to the left of "o Obviously, the final fuzzy system

depends on m_ , which is traditionally equal to the value of the first feature amount fed

J,0°
into the learning machine. In other words, the original VISIT algorithm depends on the
sequence of patterns fed in. In the sequel, we ease this limitation.

2
-w /8 - .
When e w’/ <a, <1, VISIT will add a new membership function between two

neighboring membership functions when a new pattern has an input x; such that

x €|lm.  -o.[-2lna.,m., +o.[-2lna.| where m  and m. are the centers of
J Ll PSR N L0 B J Jd Jol+1 .

two neighboring membership functions and Mg >m Obviously, if a; is large, this

‘can relax the dependence on the sequence in which the patterns are fed to the learning
mechanism.

7.4 Extraction of Fuzzy Rules via Evolutionary Algorithms

Consider thevtraining data set X = {ik = (xl,xz,---xn, y)k } The single data point J?k

is an element of the space R”x R for each k. The VISIT algorithm can be considered as
defining a function mapping F(-) from the training data set X to the space of fuzzy
systems FIS, i.e.

FIS=_ F__(X) (7.4.1)
W,A,Z.M

T
Note that an extra parameter vector M =[m1 0o Mo - M, 0] consisting of the

centers of the first membership functions has been added. Parameters M can relax the
dependence of VISIT on the sequence in which the pattern is fed. The process for the
creation of a “good” fuzzy classifier via VISIT is equivalent to looking for optimal
parameters W, A, I, and M, where “goodness” is evaluated by some performance index
J, suchas J, and J, below. Therefore, the problem of generating a fuzzy system from

data via VISIT can be mathematically expressed as a multi-objective optimization
problem: :

min (/) (7.4.2)
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subject to

W™ < W, < Wi (7.4.3)

0<a <1 | | (7.4.4)
a;"‘" <o, <o™ (7.4.5)
x;"in <m, < x;."ax _ (7.4.6)

In (7.4.3-7.4.6), [wmi“,w"‘a"] defines the range of acceptable overlaps, and

[a'."i", o-}“ax] defines the range of acceptable initial membership function spreads for the

jth feature, and [xmi", }"ax] is the jth universe of discourse.

J is the performance index for the evaluation of the fuzzy system We often
evaluate a fuzzy system in two ways:

1.  Accuracy: the fuzzy system should accurately describe the behaviors embedded in

the data.

2.  Interpretability: the size of the fuzzy rule-base should be small enough to be easily
understood. Interpretability is one of the features that distinguish a fuzzy classifier
from its peers. Moreover, for a fuzzy system, good interpretability often 1mphes
robust performance on unseen data. The interpretability of a fuzzy system is
inversely related to the number of membership functions, the number of rules, and

premise length.

Traditional optimization methods are based on the assumption that the performance
index, or objective function, is differentiable. Unfortunately in the above optimization
problem, we cannot in general assume the objective function J is differentiable with
respect to parameters W,A,Z,and M. One way to overcome this problem is to use a
genetic algorithm (GA) to optimize J. GAs provide powerful tools to efficiently search
in poorly understood, irregular spaces, and are inspired by the mechanism of natural
evolution. For some difficult optimization problems, GAs can perform better than
traditional optimization techniques, such as hill-climbing methods, by means of
exploitation of the best solutions and exploration of the search space simultaneously. The
genetic algorithm used in this chapter is described as follows.

Step 1. Let =0. Initialize the first population P, with N individuals (N even).

Step 2. Evaluate the fitness fi', i=1,...,N of the N individuals in Pt (fitness defined
below). '
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Step 3. Select the N/2 fittest individuals in population P, for mutation (defined below).

Mutate the N/2 fittest individuals to generate N/2 new individuals P’.

Step 4. Randomly select N/4 pairs of individuals and apply a crossover operator on each
pair to generate N/2 more new individuals P .

Step 5. Select the N fittest individuals from the current population (7, P/, and P"), to

construct the next population P, .

Step 6.Let z=7+1 and go to step 3. Repeat until #>¢ ., where ¢ is a predetermined

nd ° d

end time.

In Step 5, the elitist selection method always preserves the N best individuals in the
tth evolution.

Solution Representation
Chromosomes are used to describe individuals in the population. The VISIT

algorithm provides an encoding method to create chromosomes for different individuals.
P R PPN PN DS PN DT SN S PN S 4nx1

The vector £,()=] Wi+, WA (D, at (a0 o7 @)+, L O i O, (0| < R

(chromosome) represents an individual in our genetic